Q老师与十字叉(必做)
Q老师 得到一张 n 行 m 列的网格图,上面每一个格子要么是白色的要么是黑色的。
Q老师认为失去了 十字叉 的网格图莫得灵魂. 一个十字叉可以用一个数对 x 和 y 来表示, 其中 1 ≤ x ≤ n 并且 1 ≤ y ≤ m, 满足在第 x 行中的所有格子以及在第 y 列的 所有格子都是黑色的
例如下面这5个网格图里都包含十字叉
第四个图有四个十字叉,分别在 (1, 3), (1, 5), (3, 3) 和 (3, 5).
下面的图里没有十字叉
Q老师 得到了一桶黑颜料,他想为这个网格图注入灵魂。 Q老师 每分钟可以选择一个白色的格子并且把它涂黑。现在他想知道要完成这个工作,最少需要几分钟?
Input
第一行包含一个整数 q (1 ≤ q ≤ 5 * 10^4) — 表示测试组数
对于每组数据:
第一行有两个整数 n 和 m (1 ≤ n, m ≤ 5 * 10^4, n * m ≤ 4 * 10^5) — 表示网格图的行数和列数
接下来的 n 行中每一行包含 m 个字符 — ‘.’ 表示这个格子是白色的, '’ 表示这个格子是黑色的
保证 q 组数据中 n 的总和不超过 5 * 10^4, nm 的总和不超过 4 * 10^5
Output
答案输出 q 行, 第 i 行包含一个整数 — 表示第 i 组数据的答案
Sample Input
Sample Output
0
0
0
0
0
4
1
1
2
我的思路:
这道题是要计算使得当前图满足有十字叉的最小更改数。我的思路是对于每一行判断对于和每一列组成十字叉需要的更改数,最后取最小值就是答案。(这里要注意,行和列的交点处要特别注意,在计数时需要判断)
我的总结:
这里的十字叉,是指只要图里有任意十字叉就可以,没有固定的位置要求!
我的代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int maxn = 400000;
int n,m,T,ans,ro[50000],col[50000];
char ch;
vector<int > xing[50000];
int main()
{
cin>>T;
while(T--)
{
cin>>n>>m;
ans=maxn;
memset(ro,0,sizeof(ro));
memset(col,0,sizeof(col));
for(int i=0;i<n;i++) xing[i].clear();
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
cin>>ch;
if(ch=='*')
{
ro[i]++;
col[j]++;
xing[i].push_back(j);
}
}
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
int tem = n+m-ro[i]-col[j];
if(find(xing[i].begin(),xing[i].end(),j) == xing[i].end()) tem--;
if(tem==0)
{
ans=0;
break;
}
ans = min(ans,tem);
}
cout<<ans<<endl;
}
return 0;
}