LCS最长公共子序列

LCS最长公共子序列


LCS:递归

对于序列A[0,n]和B[0,m],LCS(A,B)无非三种情况

  1. 若n = -1或m = -1,则公共子序列为空串,长度也为0

  2. 若A[n] = ‘x’ = B[m],则取作LCS(A[0,n),B[0,m)) + ‘x’(减而治之)
    在这里插入图片描述

  3. A[n] != B[m],则在LCS(A[0,n],B[0,m))与LCS(A[0,n),B[0,m])中取更长者(分而治之)
    在这里插入图片描述
    这里有两种情况,一种是Y对整个匹配没有贡献,我们把Y从匹配过程中剔除,对剩下的序列进行递归的求解。另一种是X对整个匹配没有贡献,我们把X从匹配过程中剔除,对剩下的序列进行递归的求解。最终我们取他们两者中的最长者

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int LCS(char *a,char *b,int lena,int lenb){
	if(lena==0||lenb==0){
		return 0;
	}
	if(a[lena]==b[lenb]){
		return 1+LCS(a,b,lena-1,lenb-1);
	}else{
		return max(LCS(a,b,lena-1,lenb),LCS(a,b,lena,lenb-1)); 
	}
}
int main(){
	char a[15]="program";
	char b[15]="algorithm";
	printf("%d\n",LCS(a,b,strlen(a)-1,strlen(b)-1));
	return 0;
} 

LCS:动态规划

在这里插入图片描述

  1. 同时使用分而治之和减而治之的方法,
  2. 初始化第一行和第一列赋值为0
  3. if 两个字符相同,就取他左上角的值然后+1(减而治之)
  4. else 两个字符不相同,就取他上面和左面的最大值 (分而治之)
    c ( u ) = { 0 , 当 i = 0 或 j = 0 C [ i − 1 , j − 1 ] + 1 , 当 i , j > 0 且 x i = y j M A X ( C [ i , j − 1 ] , C [ i − 1 , j ] ) , 当 i , j > 0 且 x i ≠ y j c(u)=\begin{cases} 0,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad当i=0或j=0\\ C[i−1,j−1]+1,\quad\quad\quad\quad\quad\quad\quad当i,j>0且x_i=y_j\\MAX(C[i,j−1],C[i−1,j]),\quad\quad当i,j>0且x_i≠y_j \end{cases} c(u)=0,i=0j=0C[i1,j1]+1,i,j>0xi=yjMAX(C[i,j1],C[i1,j]),i,j>0xi=yj
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;
int LCS_dp(char *a,char *b){
	int lena=strlen(a);
	int lenb=strlen(b);
	int c[lena+1][lenb+1];
	for(int i=0;i<lena+1;i++){
		c[i][0]=0;
	} 
	for(int i=0;i<lenb+1;i++){
		c[0][i]=0;
	}
	for(int i=1;i<lena+1;i++){
		for(int j=1;j<lenb+1;j++){
			if(a[i-1]==b[j-1]){
				c[i][j]=c[i-1][j-1]+1;
			}else{
				c[i][j]=max(c[i-1][j],c[i][j-1]);
			}
		}
	}
	vector<char> v;
	while(lena>0&&lenb>0){
		if(a[lena-1]==b[lenb-1]){
			v.push_back(a[lena-1]);
			lena--;
			lenb--;
		}else{
			if(c[lena][lenb-1]>c[lena-1][lenb]){
				lenb--;
			}else{
				lena--;
			}
		}
	}
	for(int i=v.size()-1;i>=0;i--){
		cout<<v[i];
	}
	printf("\n");
	lena=strlen(a);
	lenb=strlen(b); 
	return c[lena][lenb];
}
int main(){
	char a[15]="program";
	char b[15]="algorithm";
	int len=LCS_dp(a,b);
	printf("%d\n",len);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值