LCS最长公共子序列
LCS:递归
对于序列A[0,n]和B[0,m],LCS(A,B)无非三种情况
-
若n = -1或m = -1,则公共子序列为空串,长度也为0
-
若A[n] = ‘x’ = B[m],则取作LCS(A[0,n),B[0,m)) + ‘x’(减而治之)
-
A[n] != B[m],则在LCS(A[0,n],B[0,m))与LCS(A[0,n),B[0,m])中取更长者(分而治之)
这里有两种情况,一种是Y对整个匹配没有贡献,我们把Y从匹配过程中剔除,对剩下的序列进行递归的求解。另一种是X对整个匹配没有贡献,我们把X从匹配过程中剔除,对剩下的序列进行递归的求解。最终我们取他们两者中的最长者
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int LCS(char *a,char *b,int lena,int lenb){
if(lena==0||lenb==0){
return 0;
}
if(a[lena]==b[lenb]){
return 1+LCS(a,b,lena-1,lenb-1);
}else{
return max(LCS(a,b,lena-1,lenb),LCS(a,b,lena,lenb-1));
}
}
int main(){
char a[15]="program";
char b[15]="algorithm";
printf("%d\n",LCS(a,b,strlen(a)-1,strlen(b)-1));
return 0;
}
LCS:动态规划
- 同时使用分而治之和减而治之的方法,
- 初始化第一行和第一列赋值为0
- if 两个字符相同,就取他左上角的值然后+1(减而治之)
- else 两个字符不相同,就取他上面和左面的最大值 (分而治之)
c ( u ) = { 0 , 当 i = 0 或 j = 0 C [ i − 1 , j − 1 ] + 1 , 当 i , j > 0 且 x i = y j M A X ( C [ i , j − 1 ] , C [ i − 1 , j ] ) , 当 i , j > 0 且 x i ≠ y j c(u)=\begin{cases} 0,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad当i=0或j=0\\ C[i−1,j−1]+1,\quad\quad\quad\quad\quad\quad\quad当i,j>0且x_i=y_j\\MAX(C[i,j−1],C[i−1,j]),\quad\quad当i,j>0且x_i≠y_j \end{cases} c(u)=⎩⎪⎨⎪⎧0,当i=0或j=0C[i−1,j−1]+1,当i,j>0且xi=yjMAX(C[i,j−1],C[i−1,j]),当i,j>0且xi=yj
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;
int LCS_dp(char *a,char *b){
int lena=strlen(a);
int lenb=strlen(b);
int c[lena+1][lenb+1];
for(int i=0;i<lena+1;i++){
c[i][0]=0;
}
for(int i=0;i<lenb+1;i++){
c[0][i]=0;
}
for(int i=1;i<lena+1;i++){
for(int j=1;j<lenb+1;j++){
if(a[i-1]==b[j-1]){
c[i][j]=c[i-1][j-1]+1;
}else{
c[i][j]=max(c[i-1][j],c[i][j-1]);
}
}
}
vector<char> v;
while(lena>0&&lenb>0){
if(a[lena-1]==b[lenb-1]){
v.push_back(a[lena-1]);
lena--;
lenb--;
}else{
if(c[lena][lenb-1]>c[lena-1][lenb]){
lenb--;
}else{
lena--;
}
}
}
for(int i=v.size()-1;i>=0;i--){
cout<<v[i];
}
printf("\n");
lena=strlen(a);
lenb=strlen(b);
return c[lena][lenb];
}
int main(){
char a[15]="program";
char b[15]="algorithm";
int len=LCS_dp(a,b);
printf("%d\n",len);
return 0;
}