一网打尽二叉数的层序遍历及相关衍生题
基本概念:层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
// 用于存储层序遍历结果的列表
List<List<Integer>> result = new ArrayList<>();
// 如果根节点为空,则返回空列表
if(root == null){
return result;
}
// 使用队列进行层序遍历,初始时包含根节点
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
// 当队列不为空时,继续遍历
while(!queue.isEmpty()){
// 用于存储当前层节点值的列表
List<Integer> currentLevel = new ArrayList<>();
// 当前层的节点数
int size = queue.size();
// 遍历当前层的所有节点
while(size > 0){
// 从队列中取出一个节点
TreeNode node = queue.poll();
// 将节点的值加入当前层结果列表中
currentLevel.add(node.val);
// 如果节点有左子节点,将左子节点加入队列
if(node.left != null){
queue.offer(node.left);
}
// 如果节点有右子节点,将右子节点加入队列
if(node.right != null){
queue.offer(node.right);
}
// 处理完一个节点,当前层待处理节点数减一
size--;
}
// 将当前层的结果加入到最终结果列表中
result.add(currentLevel);
}
// 返回层序遍历的结果
return result;
}
}
代码如下:
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
// 存储正序层序遍历结果
List<List<Integer>> result = new ArrayList<>();
// 如果根节点为空,则直接返回空列表
if(root == null){
return result;
}
// 使用队列进行层序遍历
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root); // 初始将根节点加入队列
// 当队列不为空,说明还有节点未被处理
while(!queue.isEmpty()){
// 存储当前层的节点值
List<Integer> currentLevel = new ArrayList<>();
// 当前层的节点数
int size = queue.size();
// 遍历当前层的所有节点
while(size > 0){
// 从队列中取出节点
TreeNode node = queue.poll();
// 将节点值加入当前层结果列表
currentLevel.add(node.val);
// 如果节点有左子节点,加入队列
if(node.left != null){
queue.offer(node.left);
}
// 如果节点有右子节点,加入队列
if(node.right != null){
queue.offer(node.right);
}
// 处理完一个节点后,待处理节点数减一
size--;
}
// 将当前层结果加入正序结果列表
result.add(currentLevel);
}
// 用于存储逆序结果
List<List<Integer>> list = new ArrayList<>();
// 将正序结果逆序加入list
for(int i = result.size() - 1; i >= 0; i--){
list.add(result.get(i));
}
// 返回逆序的层序遍历结果
return list;
}
}
代码如下:
class Solution {
public List<Integer> rightSideView(TreeNode root) {
// 结果列表,用于存储每一层最右侧节点的值
List<Integer> result = new ArrayList<>();
// 如果根节点为空,则直接返回空的结果列表
if(root == null){
return result;
}
// 使用队列进行层序遍历
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root); // 将根节点加入队列
// 当队列不为空时,继续遍历
while(!queue.isEmpty()){
// 当前层的节点数
int size = queue.size();
// 遍历当前层的所有节点
while(size > 0){
// 从队列中取出一个节点
TreeNode node = queue.poll();
size--; // 处理完一个节点后,当前层待处理节点数减一
// 如果当前节点是该层的最后一个节点,则将其值加入结果列表
if(size == 0){
result.add(node.val);
}
// 如果节点有左子节点,加入队列
if(node.left != null){
queue.offer(node.left);
}
// 如果节点有右子节点,加入队列
if(node.right != null){
queue.offer(node.right);
}
}
}
// 返回从二叉树的右边看过去能看到的节点值
return result;
}
}
代码如下:
class Solution {
public List<Double> averageOfLevels(TreeNode root) {
// 用于存储每一层节点值平均数的结果列表
List<Double> result = new ArrayList<>();
// 如果根节点为空,则直接返回空的结果列表
if(root == null){
return result;
}
// 使用队列进行层序遍历
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root); // 将根节点加入队列
// 当队列不为空时,继续遍历
while(!queue.isEmpty()){
// 当前层的节点数
int size = queue.size();
// 用于累计当前层节点值的总和
double levelSum = 0.0;
// 保存当前层的长度,用于计算平均值
int currentLength = size;
// 遍历当前层的所有节点
while(size > 0){
// 从队列中取出一个节点
TreeNode node = queue.poll();
// 将当前节点的值加入到当前层总和中
levelSum += node.val;
// 如果节点有左子节点,加入队列
if(node.left != null){
queue.offer(node.left);
}
// 如果节点有右子节点,加入队列
if(node.right != null){
queue.offer(node.right);
}
// 处理完一个节点后,当前层待处理节点数减一
size--;
}
// 计算当前层的平均值,并加入到结果列表中
result.add(levelSum/currentLength);
}
// 返回每一层节点值平均数的列表
return result;
}
}
代码如下:
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public List<List<Integer>> levelOrder(Node root) {
// 用于存储最终的层序遍历结果
List<List<Integer>> result = new ArrayList<>();
// 如果根节点为空,则直接返回空列表
if (root == null) {
return result;
}
// 使用队列支持层序遍历的实现
Queue<Node> queue = new LinkedList<>();
queue.offer(root); // 初始时,队列中只有根节点
// 当队列不为空,继续遍历
while (!queue.isEmpty()) {
// 用于存储当前层节点值的列表
List<Integer> currentLevel = new ArrayList<>();
int size = queue.size(); // 当前层的节点数量
// 遍历当前层的所有节点
while (size > 0) {
Node node = queue.poll(); // 从队列中取出一个节点
currentLevel.add(node.val); // 将节点的值添加到当前层的列表中
// 使用迭代器遍历当前节点的所有子节点
Iterator<Node> iterator = node.children.iterator();
while (iterator.hasNext()) {
Node child = iterator.next();
if (child != null) {
queue.offer(child); // 子节点非空则加入队列,以便后续遍历
}
}
size--; // 处理完一个节点,当前层待处理节点数减一
}
// 当前层遍历完成,将当前层的结果添加到最终结果列表中
result.add(currentLevel);
}
// 返回层序遍历的结果
return result;
}
}
代码如下:
class Solution {
public List<Integer> largestValues(TreeNode root) {
// 结果列表,用于存储每一层的最大值
List<Integer> result = new ArrayList<>();
// 如果根节点为空,直接返回空列表
if(root == null){
return result;
}
// 使用队列支持按层遍历树的节点
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root); // 将根节点加入队列开始遍历
// 当队列不为空,继续按层遍历
while(!queue.isEmpty()){
// 用于记录当前层的最大值,初始设为最小可能值
int levelMax = Integer.MIN_VALUE;
// 当前层的节点数量
int length = queue.size();
// 遍历当前层的所有节点
while(length > 0){
// 从队列中取出一个节点
TreeNode node = queue.poll();
// 更新当前层的最大值
levelMax = Math.max(levelMax, node.val);
// 如果当前节点有左子节点,加入队列
if(node.left != null){
queue.offer(node.left);
}
// 如果当前节点有右子节点,加入队列
if(node.right != null){
queue.offer(node.right);
}
// 处理完一个节点,当前层待处理节点数减一
length--;
}
// 将当前层的最大值加入结果列表
result.add(levelMax);
}
// 返回每一层的最大值组成的列表
return result;
}
}
代码如下:
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
// 如果根节点为空,则不需要连接节点,直接返回 null
if (root == null) {
return null;
}
// 使用队列进行层序遍历,初始时队列中只有根节点
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
// 当队列不为空时,持续进行层序遍历
while (!queue.isEmpty()) {
// 当前层的节点数量
int size = queue.size();
// 遍历当前层的所有节点
for (int i = 0; i < size; i++) {
// 从队列中取出当前节点
Node node = queue.poll();
// 如果当前节点不是这一层的最后一个节点
// 则将当前节点的 next 指针指向队列的头部节点(即这一层的下一个节点)
if (i < size - 1) {
node.next = queue.peek();
}
// 将当前节点的左右子节点加入队列中,以便下一轮遍历
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
// 返回处理过的树的根节点
return root;
}
}
leetcode117. 填充每个节点的下一个右侧节点指针 II
代码如下:
class Solution {
public Node connect(Node root) {
// 如果根节点为空,则不需要连接节点,直接返回 null
if (root == null) {
return null;
}
// 使用队列进行层序遍历,初始时队列中只有根节点
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
// 当队列不为空时,持续进行层序遍历
while (!queue.isEmpty()) {
// 当前层的节点数量
int size = queue.size();
// 遍历当前层的所有节点
for (int i = 0; i < size; i++) {
// 从队列中取出当前节点
Node node = queue.poll();
// 如果当前节点不是这一层的最后一个节点
// 则将当前节点的 next 指针指向队列的头部节点(即这一层的下一个节点)
if (i < size - 1) {
node.next = queue.peek();
}
// 将当前节点的左右子节点加入队列中,以便下一轮遍历
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
// 返回处理过的树的根节点
return root;
}
}
代码如下:
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int depth = 0;
while (!queue.isEmpty()) {
int size = queue.size(); // 当前层的节点数
// 使用 for 循环来遍历这一层的所有节点
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
depth++; // 完成一层的遍历,深度加一
}
return depth;
}
}
代码如下:
class Solution {
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int depth = 1; // 根节点本身就是一层,因此初始深度为1
while (!queue.isEmpty()) {
int size = queue.size(); // 当前层的节点数
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
// 检查是否达到叶子节点
if (node.left == null && node.right == null) {
return depth; // 找到最近的叶子节点,返回当前深度
}
// 将当前节点的左右子节点加入队列
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
depth++; // 完成一层的遍历,深度加一
}
return depth;
}
}