入门数据挖掘(二手车交易价格预测案例)(二):特征工程


上一篇我们已经进行了数据探索性分析,对数据的特征有了初步的了解。下面我们就要进行特征工程这最重要的一步了。工业界流传这么一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见特征工程的重要性。
让我们来一起学习下特征工程的一般步骤。

1 特征工程目标

  • 对于特征进行进一步分析,并对于数据进行处理
  • 完成对于特征工程的分析,并对于数据进行一些图表或者文字总结并打卡

2 内容介绍

常见的特征工程包括:
1.异常处理:

  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;

2.特征归一化/标准化:

  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)

3.数据分桶:

  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;

4.缺失值处理:

  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;

5.特征构造:

  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。

6.特征筛选

  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择法/相关系数法/卡方检验法/互信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

7.降维

  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

3 代码示例

首先导入我们比赛的数据集:

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline

path = './'
Train_data = pd.read_csv(path+'used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv(path+'used_car_testA_20200313.csv', sep=' ')
print(Train_data.shape)
print(Test_data.shape)
# 结果如下
(150000, 31)
(50000, 30

然后看一下数据情况和列有哪些

Train_data.head()

训练集

Train_data.columns
# 结果如下
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'seller', 'offerType', 'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3',
       'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12',
       'v_13', 'v_14'],
      dtype='object')
Test_data.columns
# 结果如下
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'seller', 'offerType', 'creatDate', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4',
       'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13',
       'v_14'],
      dtype='object')

3.1 删除异常值

这里只以箱线图为例,去删除异常值。
如何利用箱线图去除异常值:箱线图由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。下四分位数、中位数、上四分位数组成一个“带有隔间的盒子”。上四分位数到最大值之间建立一条延伸线,这个延伸线成为“胡须(whisker)”。
为了不因少数的离群数据导致整体特征的偏移,将这些离群点单独汇出,所以将盒图中的胡须的两级修改成最小观测值与最大观测值。
定义IQR为最大(最小)观测值与四分位数值间距离。则IQR = scale*(Q3-Q1),默认scale为1.5。其中Q3-Q1即上四分位数与下四分位数之间的差,也就是盒子的长度。
最小观测值为min = Q1 - IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。
最大观测值为max = Q3 + IQR,如果存在离群点大于最大观测值,则胡须上限为最大观测值,离群点单独以点汇出。如果没有比最大观测值大的数,则胡须上限为最大值。

# 这里包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25)) # 计算iqr
        val_low = data_ser.quantile(0.25) - iqr  # 计算最小观测值
        val_up = data_ser.quantile(0.75) + iqr   # 计算最大观测值
        rule_low = (data_ser < val_low)   # 异常检测掩码。为什么加括号呢,因为与下面一个条件一起进行布尔索引时,需要加括号
        rule_up = (data_ser > val_up)   # 异常检测掩码
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()   # 复制数据集
    data_series = data_n[col_name]   # 获取col_name特征的数据
    rule, value = box_plot_outliers(data_series, box_scale=scale)   # 调用函数,获得上下极值和异常检测条件
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]   # 得到异常值的索引值
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)   # 删除异常值所在行
    data_n.reset_index(drop=True, inplace=True)   # 从新设置整型索引
    print("Now column number is: {}".format(data_n.shape[0]))   # 打印现在还有多少行
    index_low = np.arange(data_series.shape[0])[rule[0]]   # 低于最小值的异常值索引
    outliers = data_series.iloc[index_low]   # 得到小异常值
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())   # 打印出小的异常值的信息
    index_up = np.arange(data_series.shape[0])[rule[1]]   # 高于最小值的异常值索引
    outliers = data_series.iloc[index_up]   # 得到大异常值
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())   # 打印出大的异常值的信息
    
    # 分别可视化删除异常值前后的箱线图
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], palette="Set1", ax=ax[1])
    return data_n

我们可以删掉一些异常数据,下面以 power 为例。其他特征删不删同学可以自行判断。但是要注意 test 的数据不能删。

Train_data = outliers_proc(Train_data, 'power', scale=3)
# 打印结果如下
Delete number is: 963
Now column number is: 149037
Description of data less than the lower bound is:
count    0.0
mean     NaN
std      NaN
min      NaN
25%      NaN
50%      NaN
75%      NaN
max      NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count      963.000000
mean       846.836968
std       1929.418081
min        376.000000
25%        400.000000
50%        436.000000
75%        514.000000
max      19312.000000
Name: power, dtype: float64

图结果:
异常处理对比箱线图
可以看到,处理前的异常值很多。处理后则异常值会减少很多。

3.2 特征构造

特征构建是指从原始数据中人工的找出一些具有物理意义的特征。需要花时间去观察原始数据,思考问题的潜在形式和数据结构,对数据敏感性和机器学习实战经验能帮助特征构建。除此之外,属性分割和结合是特征构建时常使用的方法。结构性的表格数据,可以尝试组合二个、三个不同的属性构造新的特征,如果存在时间相关属性,可以划出不同的时间窗口,得到同一属性在不同时间下的特征值,也可以把一个属性分解或切分,例如将数据中的日期字段按照季度和周期后者一天的上午、下午和晚上去构建特征。
下面二手车交易价格特征进行特征构造。因为使用构造的特征进行后面的模型训练,也要用同样的特征做预测,所以将训练集和数据集合并到一起进行特征构造。

# 训练集和测试集放在一起,方便构造特征
Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True)

1)使用时间:data[‘creatDate’] - data[‘regDate’],反应汽车使用时间,一般来说价格与使用时间成反比。

# 要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
					pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days   #转为天数

看一下我们构造的’used_time’特征的缺失情况:

data['used_time'].isnull().sum()

有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%。我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管。

2)从邮编中提取城市信息,邮编的前四位具体到县市,相当于加入了先验知识。

data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data = data

3)计算某品牌的销售统计量

# 这里要以 train 的数据计算统计量
Train_gb = Train_data.groupby("brand")   # 以品牌分组
all_info = {}
for kind, kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]  # 只看价格大于0的,其他属于脏数据
    info['brand_amount'] = len(kind_data)   # 此品牌的数量
    info['brand_price_max'] = kind_data.price.max()   # 此品牌的最高价
    info['brand_price_median'] = kind_data.price.median()   # 此品牌的价格中位数
    info['brand_price_min'] = kind_data.price.min()   # 此品牌的最低价
    info['brand_price_sum'] = kind_data.price.sum()   # 此品牌的下的总价
    info['brand_price_std'] = kind_data.price.std()   # 此品牌的价格标准差
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)   # 此品牌的平均价格
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

4)数据分桶
为什么要做数据分桶呢,原因有很多

  • 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  • 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  • LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  • 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量变成 M*N 个变量,进一步引入非线形,提升了表达能力;
  • 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

下面以 power 为例进行数据分桶:

bin = [i*10 for i in range(31)]   # 自定义分箱的边界点
data['power_bin'] = pd.cut(data['power'], bin, labels=False)   #按照分箱列表去切分数据,label为False则不使用分割区间作为标签,而使用从0开始的整数
data[['power_bin', 'power']].head()
# 结果如下
	power_bin	power
0	5.0			60
1	NaN			0
2	16.0		163
3	19.0		193
4	6.0			68

5)删除不需要的数据

data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)

下面让我们看一下我们最终的特征数据:

print(data.shape)
data.columns
# (199037, 39)
# 特征如下
Index(['SaleID', 'bodyType', 'brand', 'fuelType', 'gearbox', 'kilometer',
       'model', 'name', 'notRepairedDamage', 'offerType', 'power', 'price',
       'seller', 'train', 'v_0', 'v_1', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14',
       'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'used_time',
       'city', 'brand_amount', 'brand_price_max', 'brand_price_median',
       'brand_price_min', 'brand_price_sum', 'brand_price_std',
       'brand_price_average', 'power_bin'],
      dtype='object')

目前的数据其实已经可以给树模型使用了,所以我们导出一下

data.to_csv('data_for_tree.csv', index=0)

6)归一化
下面我们可以再构造一份特征给 LR NN 之类的模型用。之所以分开构造是因为,不同模型对数据集的要求不同。
我们先看一下’power’数据分布:

data['power'].plot.hist()

特征分布
我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替。

Train_data['power'].plot.hist()

在这里插入图片描述
我们对其取 log,再做归一化。我们可以用sklearn的preprocessing做归一化处理

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()   # 构造归一化的类

下面我们手动处理,来了解一下归一化的过程:

data['power'] = np.log(data['power'] + 1) # 加1是为了让特征从0开始,不会出现很小的负数那种情况
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

在这里插入图片描述
下面看一下kilometer特征

data['kilometer'].plot.hist()

在这里插入图片描述
kilometer的比较正常,应该是已经做过分桶了。所以我们可以直接做归一化:`

data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()

在这里插入图片描述
除此之外 还有我们刚刚构造的统计量特征: ‘brand_amount’,‘brand_price_average’,‘brand_price_max’,‘brand_price_median’,‘brand_price_min’,‘brand_price_std’,‘brand_price_sum’。也用相同的方法进行归一化:

def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

7)对类别特征进行 OneEncoder
关于类别特征的编码具体解释可参考:https://www.cnblogs.com/lianyingteng/p/7792693.html

data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])

下面看一下我们现在的特征:

print(data.shape)
data.columns
# (199037, 370)
# 特征如下
Index(['SaleID', 'kilometer', 'name', 'offerType', 'power', 'price', 'seller',
       'train', 'v_0', 'v_1',
       ...
       'power_bin_20.0', 'power_bin_21.0', 'power_bin_22.0', 'power_bin_23.0',
       'power_bin_24.0', 'power_bin_25.0', 'power_bin_26.0', 'power_bin_27.0',
       'power_bin_28.0', 'power_bin_29.0'],
      dtype='object', length=370)

这份数据可以给 LR 用:

data.to_csv('data_for_lr.csv', index=0)

特征筛选

关于特征筛选的详细方法可参考:https://blog.csdn.net/chocolate_chuqi?t=1
1)过滤式
它是先设计一个过滤方法进行特征选择,再去训练学习器。而这个过滤方式是设计一个“相关统计量”,去对特征进行计算,最后设定一个阈值去进行选择。

# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

也可以把相关性进行可视化:

data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

相关性热力图
计算相关性之后可根据相关性的大小自己选择前几个特征。

2)包裹式
包裹式从初始特征集合中不断的选择特征子集,训练学习器,根据学习器的性能来对子集进行评价,直到选择出最佳的子集。

!pip install mlxtend  # 不要点,下载速度很慢
# k_feature 太大会很难跑,没服务器,所以提前 interrupt 了
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
           k_features=10,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_ 
# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

3)嵌入式
在过滤式和包裹式特征选择方法中,特征选择过程与学习器训练过程有明显的分别。而嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1 正则化和L2正则化。
正则化项越大,模型越简单,系数越小,当正则化项增大到一定程度时,所有的特征系数都会趋于0,在这个过程中,会有一部分特征的系数先变成0。也就实现了特征选择过程。

下一章介绍,Lasso 回归和决策树可以完成嵌入式特征选择。

经验总结

特征工程是比赛中最至关重要的的一块,特别的传统的比赛,大家的模型可能都差不多,调参带来的效果增幅是非常有限的,但特征工程的好坏往往会决定了最终的排名和成绩。
特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。
特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。
有些比赛的特征是匿名特征,这导致我们并不清楚特征相互直接的关联性,这时我们就只有单纯基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算(如上面我们算出的使用时长),多项式组合等然后进行筛选。由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。
对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。
当然特征工程其实是和模型结合在一起的,这就是为什么要为 LR NN 做分桶和特征归一化的原因,而对于特征的处理效果和特征重要性等往往要通过模型来验证。
总的来说,特征工程是一个入门简单,但想精通非常难的一件事。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ethan-running

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值