AVL树

什么是AVL树

首先AVL树是二叉搜索树,但是严格的控制高度,因为如果插入树的序列原本就是有序的,那二叉搜索树就近似于链表,查找效率极其低下,所以就引入AVL树并且满足下列条件。

  • 每个结点左右子树高度差不超过 1
  • 左右子树仍然满足上述条件

由于严格的控制高度,所以AVL树的查找效率还是 O(log2N),如果有N个结点,就会把树的高度控制在O(log2N)

AVL树的插入

首先按照二叉搜索树的插入方式进行插入(如果为空直接插入作根节点,如果不为空,比当前结点大就到左子树,比当前结点小就到右子树,在合适的位置插入),然后更新平衡因子,如果平衡因子变为了 2 或者 -2,就对树进行旋转处理

  1. 当新插入结点在较高左子树的左侧,进行右单旋转
    在这里插入图片描述
  2. 当新插入的结点在较高右子树的右侧,进行左单旋转
    在这里插入图片描述
  3. 当新插入的结点在较高左子树的右侧,进行左右双旋
    在这里插入图片描述
  4. 当新插入的结点在较高右子树的左侧,进行右左双旋
    在这里插入图片描述
    旋转完成之后还要更新所旋转的结点的平衡因子

插入结点的实现

bool insert(const pair<K,V>& kv) {
		// 1.如果根不存在,直接让新结点作为根
		if (_root == nullptr) {
			_root = new Node(kv);
			return true;
		}

		// 按照二叉搜索树的方式插入
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) {
			if (cur && cur->_kv.first > kv.first) {
				parent = cur;
				cur = cur->_left;
			}
			else if (cur && cur->_kv.first <= kv.first) {
				parent = cur;
				cur = cur->_right;
			}
			else {
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first > kv.first) {
			parent->_left = cur;
			cur->_parent = parent;
		}
		else {
			parent->_right = cur;
			cur->_parent = parent;
		}

		// 2.更新平衡因子
		while (parent) {
			if (cur == parent->_right) {
				parent->_bf++;
			}
			else
				parent->_bf--;

			// 说明子树高度未发生变化,不用继续更新平衡因子,退出循环
			if (parent->_bf == 0)
				break;
			
			// 说明子树高度发生变化,需要往上更新平衡因子
			else if (parent->_bf == 1 || parent->_bf == -1) {
				cur = parent;
				parent = parent->_parent;
			}

			// 说明子树高度已经不平衡,需要调节
			else if (parent->_bf == 2 || parent->_bf == -2) {
				if (parent->_bf == 2) {
					// 新结点插入在较高右子树的右侧:右右 -- 左旋
					if (cur->_bf == 1) {
						RotateL(parent);
					}
					// 新结点插入在较高右子树的左侧:右左 -- 右左双旋
					else if (cur->_bf == -1) {
						RotateRL(parent);
					}
				}
				else if (parent->_bf == -2) {
					// 新结点插入在较高左子树的左侧:左左 -- 右旋
					if (cur->_bf == -1) {
						RotateR(parent);
					}
					// 新结点插入在较高左子树的右侧:左右 -- 左右双旋
					else if (cur->_bf == 1) {
						RotateLR(parent);
					}
				}
				// 旋转完成后,parent的高度就恢复到插入之前的高度,更新结束
				break;
			}
		}
		return true;
	}

	// 左旋
	void RotateL(Node *parent) {
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if(subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subR;

		// 1.如果parent是原来这棵树的根,那么现在 subR 是根
		// 2.如果不是根,让subR顶替原来parent的位置
		if (parent == _root) {
			_root = subR;
			subR->_parent = nullptr;
		}
		else if (parent == ppNode->_right) {
			ppNode->_right = subR;
			subR->_parent = ppNode;
		}
		else if (parent == ppNode->_left) {
			ppNode->_left = subR;
			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}

	void RotateR(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;


		if (parent == _root) {
			_root = subL;
			subL->_parent = nullptr;
		}
		else if (parent == ppNode->_right) {
			ppNode->_right = subL;
			subL->_parent = ppNode;
		}
		else if (parent == ppNode->_left) {
			ppNode->_left = subL;
			subL->_parent = ppNode;
		}

		parent->_bf = subL->_bf = 0;
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == -1) {
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 1) {
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == 0) {
			subR->_bf = 0;
			parent->_bf = 0;
			subRL->_bf = 0;
		}
	}

	void RotateLR(Node* parent) {
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(subL);
		RotateR(parent);

		if (bf == 1) {
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1) {
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0) {
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
	}

AVLTree的实现

AVLTree

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值