No module named ‘torch_geometric‘解决办法——PyG(PyTorch Geometric)安装教程

1、查询已安装的torch版本

一定要先查询自己的torch版本,也不同版本的依赖跟库都是不一样的。

import torch
print("torch版本:",torch.__version__)

输出结果:
在这里插入图片描述

2、安装依赖

2.1 进入官网下载依赖。

官网下载链接:官网下载链接,进入官网找到自己对应的版本;
在这里插入图片描述

这里要仔细看清楚,一共需要下载四个依赖包,根据自己的Python版本(cp39表示的就是Python3.9)以及系统版本(win、macos、linux)来选择。
在这里插入图片描述

下载完之后的包总共有四个,如下图:
在这里插入图片描述

2.2 安装依赖

找到下载依赖的文件夹,使用cmd窗口,直接输入 pip install + 包全名
例如安装第一个包的命令:pip install torch_cluster-1.6.1+pt113cpu-cp39-cp39-win_amd64.whl
将4个包都安装完成之后,进入到最后一步。

2.3 安装geometric

同样在上一步的cmd窗口中,输入以下代码:pip install torch-geometric
显示安装成功。
在这里插入图片描述

<think>好的,用户想了解或使用PyTorch Geometric相关的信息,但目前他们的查询中提到了关于C语言中NULL的引用,这似乎不太相关。我需要先确认用户的主要需求是什么。 首先,用户可能是在使用PyTorch Geometric时遇到了与NULL相关的问题,比如空指针错误?或者他们可能误将C语言中的NULL概念应用到了Python或PyTorch中?Python中没有NULL,而是用None来表示空值,这点需要澄清。 接下来,用户明确提到想了解或使用PyTorch Geometric,所以需要提供该库的基本信息、核心功能、安装方法以及简单示例。同时,用户之前的引用内容涉及到底层的指针和内存地址,可能在理解某些错误时会有帮助,比如在C扩展中出现的段错误,但在Python层通常不会直接遇到这些问题。 需要确保回答结构清晰,分步骤介绍PyTorch Geometric,包括安装、数据加载、模型构建、训练和评估。同时,生成的相关问题需要围绕库的使用、常见问题、与其他库的区别和应用场景展开。要避免引入与用户问题无关的C语言NULL内容,除非用户明确将两者联系起来。 另外,用户提供的引用[1]和[2]主要讨论C中的NULL,这可能与他们在使用PyTorch时遇到的某些底层错误有关,但可能性较低。因此,在回答中可以适当忽略这部分,除非用户进一步说明问题。现在需要专注于PyTorch Geometric的介绍,确保提供的信息准确且有用,并引导用户提出更具体的问题。</think>### PyTorch Geometric 简介 PyTorch Geometric(简称PyG)是基于PyTorch的图神经网络(GNN)扩展库,专门用于处理图结构数据(如社交网络、分子结构等)。它提供了高效的图数据加载、预处理、模型构建及训练工具,支持多种图神经网络模型(如GCN、GAT、GraphSAGE等)。 --- ### 核心功能与使用步骤 1. **安装** 安装PyTorch Geometric需要先安装PyTorch,再根据系统环境安装对应版本的PyG: ```bash pip install torch torchvision torchaudio # 安装PyTorch pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+cu118.html # 安装依赖 pip install torch-geometric # 安装PyG ``` 2. **数据加载与处理** PyG提供内置数据集(如Cora、Citeseer)和自定义数据类`Data`,支持节点分类、边预测等任务: ```python from torch_geometric.datasets import Planetoid dataset = Planetoid(root='/tmp/Cora', name='Cora') # 加载Cora数据集 data = dataset[0] # 获取图数据(节点特征、边索引等) ``` 3. **模型构建** 使用PyG的图卷积层构建模型: ```python import torch from torch_geometric.nn import GCNConv class GCN(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super().__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index).relu() x = self.conv2(x, edge_index) return x ``` 4. **训练与评估** 使用标准PyTorch流程进行训练: ```python model = GCN(input_dim=dataset.num_features, hidden_dim=16, output_dim=dataset.num_classes) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) criterion = torch.nn.CrossEntropyLoss() for epoch in range(200): model.train() optimizer.zero_grad() out = model(data) loss = criterion(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() ``` --- ### 常见问题解析 1. **与`NULL`相关的错误** - Python中空值用`None`表示,若代码中误用`NULL`会引发`NameError`。 - 若在C扩展中操作PyTorch张量时出现段错误(如引用[2]中的问题),需检查指针初始化逻辑,确保未引用无效内存地址[^2]。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值