机器学习实战第三章KNN学习笔记1

https://github.com/wzy6642/Machine-Learning-in-Action-Python3
在此向本书的作者,代码整理者致敬。

监督学习使用两种类型的目标变量
    标称型:真假,动物分类集合{爬行类,鱼类}
    数值型:0.100,4200,100.43
# -*- coding: UTF-8 -*-
import numpy as np
import operator
def createDataSet():
    #四组二维特征
    group = np.array([[1,101],[5,89],[108,5],[115,8]])
    #四组特征的标签
    labels = ['爱情片','爱情片','动作片','动作片']
    return group, labels
"""
函数说明:kNN算法,分类器

Parameters:
    inX - 用于分类的数据(测试集)
    dataSet - 用于训练的数据(训练集)
    labes - 分类标签
    k - kNN算法参数,选择距离最小的k个点
Returns:
    sortedClassCount[0][0] - 分类结果
Modify:
    2017-07-13
"""
#             测试集,训练集,分类标签,k
def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #  inX = [101,20]复制四次
    '''[
    [101  20]
    [101  20]
    [101  20]
    [101  20]
       ]
    然后减去测试集
    '''
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    
    #平方
    sqDiffMat = diffMat**2
    '''
    [[10000  6561]
     [ 9216  4761]
     [   49   225]
     [  196   144]]
    '''
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    #[16561 13977   274   340]
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    #[2 3 1 0]
    sortedDistIndices = distances.argsort()
    
    
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #动作片  动作片  爱情片
        
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数 {'动作片': 2, '爱情片': 1}
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    print(sortedClassCount)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

group, labels = createDataSet()
#测试集
test = [101,20]
#                      测试集,训练集,分类标签,k
test_class = classify0(test, group, labels, 3)
#打印分类结果
#print(test_class)
[('动作片', 2), ('爱情片', 1)]
#case 2 约会网站使用K-近邻算法
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import time
import numpy as np
import operator
"""
函数说明:打开解析文件,对数据进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
    filename - 文件名
    
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类label向量
    
Modify:
    2018-07-13
"""
def file2matrix(filename):
    # 打开文件
    fr = open(filename)
    # 读取文件所有内容
    arrayOlines = fr.readlines()
    # 得到文件行数
    numberOfLines = len(arrayOlines)
    # 生成矩阵numberOfLines行,3列的零元素矩阵
    returnMat = np.zeros((numberOfLines, 3))
    # 创建分类标签向量
    classLabelVector = []
    # 行的索引值
    index = 0
    # 读取每一行
    for line in arrayOlines:
        # 去掉每一行首尾的空白符,例如'\n','\r','\t',' '
        line = line.strip()
        # 将每一行内容根据'\t'符进行切片,本例中一共有4列
        #['40920', '8.326976', '0.953952', 'largeDoses']
        listFromLine = line.split('\t')
        # 将数据的前3列进行提取保存在returnMat矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        # 根据文本内容进行分类1:不喜欢;2:一般;3:喜欢
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    # 返回标签列向量以及特征矩阵
    return returnMat, classLabelVector

file_dating,file_label=file2matrix('C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt')

file_dating
array([[4.0920000e+04, 8.3269760e+00, 9.5395200e-01],
       [1.4488000e+04, 7.1534690e+00, 1.6739040e+00],
       [2.6052000e+04, 1.4418710e+00, 8.0512400e-01],
       ...,
       [2.6575000e+04, 1.0650102e+01, 8.6662700e-01],
       [4.8111000e+04, 9.1345280e+00, 7.2804500e-01],
       [4.3757000e+04, 7.8826010e+00, 1.3324460e+00]])
file_label[0:20]
[3, 2, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3]
import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure() 
ax = fig.add_subplot(111) 
#ax.scatter(file_dating[:,1],file_dating[:,2]) 
ax.scatter(file_dating[:,1], file_dating[:,2],
15.0*array(file_label), 15.0*array(file_label))
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XVXBpsdq-1617107010640)(output_7_0.png)]

#归一化
"""
Parameters:
    dataSet - 特征矩阵
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值
"""
# 函数说明:对数据进行归一化
def autoNorm(dataSet):
    #获得数据的最小值
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    #最大值和最小值的范围
    ranges = maxVals - minVals
    #shape(dataSet)返回dataSet的矩阵行列数
    normDataSet = np.zeros(np.shape(dataSet))
    #返回dataSet的行数
    m = dataSet.shape[0]
    #原始值减去最小值
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    #除以最大和最小值的差,得到归一化数据
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    #返回归一化数据结果,数据范围,最小值
    return normDataSet, ranges, minVals


if __name__ == '__main__':
    #打开的文件名
    filename = "C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt"
    #打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    normDataSet, ranges, minVals = autoNorm(datingDataMat)
    print(normDataSet)
    print(ranges)
    print(minVals)



[[0.44832535 0.39805139 0.56233353]
 [0.15873259 0.34195467 0.98724416]
 [0.28542943 0.06892523 0.47449629]
 ...
 [0.29115949 0.50910294 0.51079493]
 [0.52711097 0.43665451 0.4290048 ]
 [0.47940793 0.3768091  0.78571804]]
[9.1273000e+04 2.0919349e+01 1.6943610e+00]
[0.       0.       0.001156]
# -*- coding: UTF-8 -*-
import numpy as np
import operator

"""
函数说明:kNN算法,分类器

Parameters:
    inX - 用于分类的数据(测试集)
    dataSet - 用于训练的数据(训练集)
    labes - 分类标签
    k - kNN算法参数,选择距离最小的k个点
Returns:
    sortedClassCount[0][0] - 分类结果

Modify:
    2017-03-24
"""
def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    #二维特征相减后平方
    sqDiffMat = diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #python3中用items()替换python2中的iteritems()
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量

Modify:
    2017-03-24
"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

"""
函数说明:对数据进行归一化

Parameters:
    dataSet - 特征矩阵
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值

Modify:
    2017-03-24
"""
def autoNorm(dataSet):
    #获得数据的最小值
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    #最大值和最小值的范围
    ranges = maxVals - minVals
    #shape(dataSet)返回dataSet的矩阵行列数
    normDataSet = np.zeros(np.shape(dataSet))
    #返回dataSet的行数
    m = dataSet.shape[0]
    #原始值减去最小值
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    #除以最大和最小值的差,得到归一化数据
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    #返回归一化数据结果,数据范围,最小值
    return normDataSet, ranges, minVals


"""
函数说明:分类器测试函数

Parameters:
    无
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值

Modify:
    2017-03-24
"""
def datingClassTest():
    #打开的文件名
    filename = "C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt"
    #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
    datingDataMat, datingLabels = file2matrix(filename)
    #取所有数据的百分之十
    hoRatio = 0.10
    #数据归一化,返回归一化后的矩阵,数据范围,数据最小值
    normMat, ranges, minVals = autoNorm(datingDataMat)
    #获得normMat的行数
    m = normMat.shape[0]
    #百分之十的测试数据的个数
    numTestVecs = int(m * hoRatio)
    #分类错误计数
    errorCount = 0.0

    for i in range(numTestVecs):
        #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
            datingLabels[numTestVecs:m], 4)
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

"""
函数说明:main函数

Parameters:
    无
Returns:
    无

Modify:
    2017-03-24
"""
if __name__ == '__main__':
    datingClassTest()

分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:3	真实类别:1
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:3	真实类别:3
分类结果:3	真实类别:1
分类结果:3	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:2	真实类别:3
分类结果:1	真实类别:1
分类结果:2	真实类别:2
分类结果:1	真实类别:1
分类结果:3	真实类别:3
分类结果:3	真实类别:3
分类结果:2	真实类别:2
分类结果:2	真实类别:1
分类结果:1	真实类别:1
错误率:4.000000%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值