https://github.com/wzy6642/Machine-Learning-in-Action-Python3
在此向本书的作者,代码整理者致敬。
监督学习使用两种类型的目标变量
标称型:真假,动物分类集合{爬行类,鱼类}
数值型:0.100,4200,100.43
# -*- coding: UTF-8 -*-
import numpy as np
import operator
def createDataSet():
#四组二维特征
group = np.array([[1,101],[5,89],[108,5],[115,8]])
#四组特征的标签
labels = ['爱情片','爱情片','动作片','动作片']
return group, labels
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
Modify:
2017-07-13
"""
# 测试集,训练集,分类标签,k
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
# inX = [101,20]复制四次
'''[
[101 20]
[101 20]
[101 20]
[101 20]
]
然后减去测试集
'''
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#平方
sqDiffMat = diffMat**2
'''
[[10000 6561]
[ 9216 4761]
[ 49 225]
[ 196 144]]
'''
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
#[16561 13977 274 340]
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
#[2 3 1 0]
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#动作片 动作片 爱情片
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数 {'动作片': 2, '爱情片': 1}
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
print(sortedClassCount)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
group, labels = createDataSet()
#测试集
test = [101,20]
# 测试集,训练集,分类标签,k
test_class = classify0(test, group, labels, 3)
#打印分类结果
#print(test_class)
[('动作片', 2), ('爱情片', 1)]
#case 2 约会网站使用K-近邻算法
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import time
import numpy as np
import operator
"""
函数说明:打开解析文件,对数据进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类label向量
Modify:
2018-07-13
"""
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOlines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOlines)
# 生成矩阵numberOfLines行,3列的零元素矩阵
returnMat = np.zeros((numberOfLines, 3))
# 创建分类标签向量
classLabelVector = []
# 行的索引值
index = 0
# 读取每一行
for line in arrayOlines:
# 去掉每一行首尾的空白符,例如'\n','\r','\t',' '
line = line.strip()
# 将每一行内容根据'\t'符进行切片,本例中一共有4列
#['40920', '8.326976', '0.953952', 'largeDoses']
listFromLine = line.split('\t')
# 将数据的前3列进行提取保存在returnMat矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
# 根据文本内容进行分类1:不喜欢;2:一般;3:喜欢
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
# 返回标签列向量以及特征矩阵
return returnMat, classLabelVector
file_dating,file_label=file2matrix('C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt')
file_dating
array([[4.0920000e+04, 8.3269760e+00, 9.5395200e-01],
[1.4488000e+04, 7.1534690e+00, 1.6739040e+00],
[2.6052000e+04, 1.4418710e+00, 8.0512400e-01],
...,
[2.6575000e+04, 1.0650102e+01, 8.6662700e-01],
[4.8111000e+04, 9.1345280e+00, 7.2804500e-01],
[4.3757000e+04, 7.8826010e+00, 1.3324460e+00]])
file_label[0:20]
[3, 2, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3]
import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
#ax.scatter(file_dating[:,1],file_dating[:,2])
ax.scatter(file_dating[:,1], file_dating[:,2],
15.0*array(file_label), 15.0*array(file_label))
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XVXBpsdq-1617107010640)(output_7_0.png)]
#归一化
"""
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
"""
# 函数说明:对数据进行归一化
def autoNorm(dataSet):
#获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#最大值和最小值的范围
ranges = maxVals - minVals
#shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
#返回dataSet的行数
m = dataSet.shape[0]
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
if __name__ == '__main__':
#打开的文件名
filename = "C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
normDataSet, ranges, minVals = autoNorm(datingDataMat)
print(normDataSet)
print(ranges)
print(minVals)
[[0.44832535 0.39805139 0.56233353]
[0.15873259 0.34195467 0.98724416]
[0.28542943 0.06892523 0.47449629]
...
[0.29115949 0.50910294 0.51079493]
[0.52711097 0.43665451 0.4290048 ]
[0.47940793 0.3768091 0.78571804]]
[9.1273000e+04 2.0919349e+01 1.6943610e+00]
[0. 0. 0.001156]
# -*- coding: UTF-8 -*-
import numpy as np
import operator
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
Modify:
2017-03-24
"""
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
Modify:
2017-03-24
"""
def file2matrix(filename):
#打开文件
fr = open(filename)
#读取文件所有内容
arrayOLines = fr.readlines()
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
"""
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
Modify:
2017-03-24
"""
def autoNorm(dataSet):
#获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#最大值和最小值的范围
ranges = maxVals - minVals
#shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
#返回dataSet的行数
m = dataSet.shape[0]
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
"""
函数说明:分类器测试函数
Parameters:
无
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
Modify:
2017-03-24
"""
def datingClassTest():
#打开的文件名
filename = "C:/Users/18578/Desktop/Machine-Learning-in-Action-Python3-master/kNN_Project1/datingTestSet.txt"
#将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
datingDataMat, datingLabels = file2matrix(filename)
#取所有数据的百分之十
hoRatio = 0.10
#数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
#获得normMat的行数
m = normMat.shape[0]
#百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
#分类错误计数
errorCount = 0.0
for i in range(numTestVecs):
#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m], 4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
"""
函数说明:main函数
Parameters:
无
Returns:
无
Modify:
2017-03-24
"""
if __name__ == '__main__':
datingClassTest()
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:2 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:1
分类结果:1 真实类别:1
错误率:4.000000%