图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
这个问题和求图着色方案差不多,依次检查颜色是否可取,并且颜色的种数要正好等于输入的颜色数
#include<iostream>
#include<vector>
#include<set>
using namespace std;
int V,E,K;
vector<int>track;
int mapp[505][505];
int is_ok()
{
int x = (int)(track.size())-1;
for(int i = 0;i<x;i++)
{
if(track[i]==track[x]&&mapp[i+1][x+1]==1) //track[i]储存的是第i+1个顶点的颜色
return 0;
}
return 1;
}
int main()
{
int x,y;
cin>>V>>E>>K;
for(int i = 0;i<E;i++)
{
cin>>x>>y;
mapp[x][y] = 1;
mapp[y][x] = 1;
}
int N;
cin>>N;
set<int>counnt;
for(int i = 0;i<N;i++)
{
if(i!=0)
cout<<endl;
int flag = 1;
for(int j = 0;j<V;j++)
{
cin>>x;
track.push_back(x);
counnt.insert(x);
if(((int)counnt.size()>K||!is_ok())&&flag==1)
{
flag = 0;
}
}
if(counnt.size()!=K)
flag = 0; //之前看错题目,以为只要颜色数小于K就行,导致有个测试点错了。
track.resize(0);
counnt.erase(counnt.begin(),counnt.end());
if(flag==1)
cout<<"Yes";
else cout<<"No";
}
return 0;
}