L2-023 图着色问题 (25分)

该博客探讨了图着色问题的判断,这是一个NP完全问题。它不是寻找解决方案,而是评估给定的颜色分配是否符合图着色问题的要求,即无向图中相邻顶点颜色不同。博客提供了一个输入格式示例,包括顶点数、边数、颜色数及多个颜色分配方案,并展示了根据这些条件判断每个方案是否可行的输出示例。
摘要由CSDN通过智能技术生成

图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。

输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4

输出样例:
Yes
Yes
No
No

这个问题和求图着色方案差不多,依次检查颜色是否可取,并且颜色的种数要正好等于输入的颜色数

#include<iostream>
#include<vector>
#include<set>
using namespace std;
int V,E,K;
vector<int>track;
int mapp[505][505];
int is_ok()
{
    int x = (int)(track.size())-1;
    for(int i = 0;i<x;i++)
    {
        if(track[i]==track[x]&&mapp[i+1][x+1]==1)   //track[i]储存的是第i+1个顶点的颜色
            return 0;
    }
    return 1;
}
int main()
{
    int x,y;
    cin>>V>>E>>K;
    for(int i = 0;i<E;i++)
    {
        cin>>x>>y;
        mapp[x][y] = 1;
        mapp[y][x] = 1;
    }
    int N;
    cin>>N;
    set<int>counnt;
    for(int i = 0;i<N;i++)
    {
        if(i!=0)
            cout<<endl;
        int flag = 1;
        for(int j = 0;j<V;j++)
        {
            cin>>x;
            track.push_back(x);
            counnt.insert(x);
            if(((int)counnt.size()>K||!is_ok())&&flag==1)
            {
                flag = 0;
            }
        }
      if(counnt.size()!=K)
        flag = 0;   //之前看错题目,以为只要颜色数小于K就行,导致有个测试点错了。
        track.resize(0);
        counnt.erase(counnt.begin(),counnt.end());
        if(flag==1)
            cout<<"Yes";
        else cout<<"No";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值