别团等shy哥发育
码龄4年
  • 354,834
    被访问
  • 496
    原创
  • 2,189
    排名
  • 8,560
    粉丝
关注
提问 私信

个人简介:研一硕士在读,对分布式、中间件、容器、微服务、深度学习方面感兴趣,希望可以在这些方面和大家交流学习方法。

  • 加入CSDN时间: 2018-11-21
博客描述:
https://www.codeleader.top
查看详细资料
  • 7
    领奖
    总分 4,220 当月 495
个人成就
  • Java领域优质创作者
  • 获得638次点赞
  • 内容获得1,326次评论
  • 获得2,012次收藏
创作历程
  • 91篇
    2022年
  • 280篇
    2021年
  • 148篇
    2020年
成就勋章
TA的专栏
  • 深度学习
    18篇
  • 消息队列
    15篇
  • 阿里云
    8篇
  • 微信&&支付宝
    1篇
  • nginx
    3篇
  • MyCat
    9篇
  • SpringCloud Alibaba
    16篇
  • Spring Cloud
    37篇
  • SpringBoot
    31篇
  • SSM
    30篇
  • SpringSecurity
    15篇
  • Vue
    21篇
  • Mybatis-Plus
    13篇
  • Docker
    31篇
  • Redis
    31篇
  • 微信小程序
    14篇
  • Shiro
    5篇
  • linux
    8篇
  • 测试
    2篇
  • 消息中间件
    3篇
  • 部署相关
    5篇
  • java
    26篇
  • JUC
    5篇
  • oracle
    3篇
  • MongoDB
    6篇
  • jQuery
    29篇
  • Layui
    1篇
  • bootstrap
    17篇
  • mysql
    23篇
  • maven
    4篇
  • ECharts
    17篇
  • MFC
    2篇
  • c#
    11篇
  • Python
    1篇
  • Git
    4篇
  • 解决方案
    79篇
  • web
    35篇
  • 数据结构与算法
    50篇
  • 机器学习
    4篇
  • 数字逻辑
    1篇
  • 编译原理
    1篇
  • 年终总结
    1篇
TA的推广
兴趣领域 设置
  • Python
    python
  • 大数据
    mysqlredisrabbitmqkafka
  • 后端
    springspring boot后端架构分布式
  • 云原生
    consul微服务服务发现
  • 人工智能
    数据挖掘机器学习深度学习神经网络tensorflowkeras聚类分类回归
  • 搜索
    elasticsearch
  • 云平台
    云计算
  • 运维
    容器
  • 服务器
    linux
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

GRU(门控循环单元)实现股票预测

GRU实现股票预测1、GRU(门控循环单元)1.1 GRU原理1.2 Tensorflow2描述GRU层1.3 GRU股票预测1.3.1 数据源1.3.2 代码实现1、GRU(门控循环单元)GRU 由 Cho 等人于 2014 年提出,优化 LSTM 结构。1.1 GRU原理  门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一种变体,将 LSTM 中遗忘门与输入门合二为一为更新门,模型比 LSTM 模型更简单。  如上图所示,GRU 使记忆体hth_tht​
原创
发布博客 2022.05.20 ·
104 阅读 ·
0 点赞 ·
1 评论

LSTM实现股票预测

LSTM实现股票预测1、传统RNN的缺点2、LSTM(长短时记忆网络)2.1 原理2.2 举例2.3 Tensorflow2描述LSTM层3、LSTM实现股票预测3.1 数据源3.2 代码实现1、传统RNN的缺点  RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱。如下图中的两句话:左上角的句子中 sky 可以由较短跨度的词预测出来,而右下角句子中的 French 与较长跨度之前的 France 有关系,即长跨度依赖,比较难预测。  图片来源
原创
发布博客 2022.05.20 ·
137 阅读 ·
0 点赞 ·
0 评论

SimpleRNN实现股票预测

SimpleRNN实现股票预测1、数据源2、代码实现3、完整代码原理请查看前面几篇文章。1、数据源  SH600519.csv 是用 tushare 模块下载的 SH600519 贵州茅台的日 k 线数据,本次例子中只用它的 C 列数据(如图 所示):  用连续 60 天的开盘价,预测第 61 天的开盘价。2、代码实现  按照六步法: import 相关模块->读取贵州茅台日 k 线数据到变量 maotai,把变量 maotai 中前 2126 天数据中的开盘价作为训练数据,把变量
原创
发布博客 2022.05.20 ·
203 阅读 ·
1 点赞 ·
0 评论

循环神经网络详解(RNN原理和实现代码)

循环神经网络RNN1、卷积神经网络与循环神经网络简单对比2、详解RNN2.1 循环核2.2 循环核按照时间步展开2.3 循环计算层:向输出方向生长2.4 RNN训练2.5 Tensorflow2描述循环计算层2.6 循环计算过程1pre12.6.1 独热编码实现2.6.2 Embedding 编码方式2.7 循环计算过程之4pre12.7.1 独热编码方式实现2.7.2 Embedding编码方式实现1、卷积神经网络与循环神经网络简单对比CNN:借助卷积核(kernel)提取特征后,送入后续网络(如全
原创
发布博客 2022.05.20 ·
389 阅读 ·
0 点赞 ·
0 评论

关联规则挖掘--Apriori算法

关联规则挖掘--Apriori算法1、关联规则概述2、置信度、支持度、提升度的概念3、关联规则挖掘问题4、Apriori算法4.1 算法步骤4.2 先验原理4.3 寻找最大频繁项的过程4.4 注意问题:项的连接5、代码实战1、关联规则概述  关联规则(Association Rules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中 一个事物就能够通过其他事物预测到。  关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的
原创
发布博客 2022.05.18 ·
199 阅读 ·
0 点赞 ·
0 评论

经典卷积网络--InceptionNet

经典卷积网络--InceptionNet1、InceptionNet网络模型2、1 * 1的卷积运算是如何降低特征厚度?3、InceptionNet完整实现(使用CIFAR10数据集)借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数)。1、InceptionNet网络模型  InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的
原创
发布博客 2022.05.16 ·
267 阅读 ·
0 点赞 ·
0 评论

经典卷积网络--ResNet残差网络

经典卷积网络--ResNet残差网络1、ResNet残差网络2、tf.keras实现残差结构3、tensorflow2.0实现ResNet18(使用CIFAR10数据集)借鉴点:层间残差跳连,引入前方信息,减少梯度消失,使神经网络层数变身成为可能。1、ResNet残差网络  ResNet 即深度残差网络,由何恺明及其团队提出,是深度学习领域又一具有开创性的工作,通过对残差结构的运用,ResNet 使得训练数百层的网络成为了可能,从而具有非常强大的表征能力,其网络结构如图所示。  ResNet
原创
发布博客 2022.05.15 ·
534 阅读 ·
0 点赞 ·
0 评论

经典卷积网络--VGGNet

经典卷积网络--VGGNet1、VGGNet网络模型2、VGGNet网络模型搭建(使用Tensorflow)3、完整代码实现(使用CIFAR10数据集)借鉴点:小卷积核减少参数的同时,提高识别准确率;网络结构规整,适合并行加速。1、VGGNet网络模型  在 AlexNet 之后,另一个性能提升较大的网络是诞生于 2014 年的 VGGNet,其 ImageNet Top5 错误率减小到了 7.3 %。  VGGNet 网络的最大改进是在网络的深度上,由 AlexNet 的 8 层增加到了 1
原创
发布博客 2022.05.15 ·
176 阅读 ·
0 点赞 ·
0 评论

经典卷积网络--AlexNet

经典卷积网络--AlexNet1、AlexNet网络结构2、使用Tensorflow搭建AlexNet3、完整代码实现该网络值得借鉴的地方:激活函数使用 Relu,提升训练速度;Dropout 防止过拟合。1、AlexNet网络结构  AlexNet 网络诞生于 2012 年,是第一个在图像识别比赛中获得冠军的深度学习模型,其 ImageNet Top5 错误率为 16.4 %,可以说 AlexNet 的出现使得已经沉寂多年的深度学习领域开启了黄金时代。  AlexNet 的总体结构和 LeNe
原创
发布博客 2022.05.15 ·
239 阅读 ·
0 点赞 ·
0 评论

经典卷积网络--LeNet

经典卷积网络--LeNet1、LeNet5网络结构搭建2、LeNet5代码实现(使用CIFAR10数据集)1、LeNet5网络结构搭建  LeNet 即 LeNet5,由 Yann LeCun 在 1998 年提出,做为最早的卷积神经网络之一,是许多神经网络架构的起点,其网络结构如图所示。  根据以上信息,就可以根据我前面文章所总结出来的方法,在 Tensorflow 框架下利用 tf.Keras 来构建 LeNet5 模型,如图所示。  图中紫色部分为卷积层,红色部分为全连接层,模型图与代码一
原创
发布博客 2022.05.15 ·
124 阅读 ·
0 点赞 ·
0 评论

卷积神经网络(原理与代码实现)

卷积神经网络1、卷积的概念2、感受野的概念3、全零填充(padding)4、Tensorflow描述卷积层4.1 卷积(Convolutional)4.2 批标准化(Batch Normalization,BN)4.3 池化4.4 Dropout5、简单CNN实现CIFAR10数据集分类5.1 cifar10 数据集介绍5.2 网络结构5.3 网络搭建示例代码6、神经网络搭建总结1、卷积的概念  卷积的概念:卷积可以认为是一种有效提取图像特征的方法。一般会用一个正方形的卷积核,按指定步长,在输入特征图上
原创
发布博客 2022.05.15 ·
4335 阅读 ·
29 点赞 ·
10 评论

使用tf.keras快速搭建神经网络

使用tf.keras快速搭建神经网络1、keras介绍2、搭建神经网络六步法3、关键函数的用法介绍4、快速搭建网络实现鸢尾花数据集分类5、快速实现MNIST手写体数字识别5.1 MNIST数据集介绍5.2 查看MNIST数据集结构5.3 训练MNIST数据集6、训练Fashion_mnist数据集1、keras介绍  tf.keras 是 tensorflow2 引入的高封装度的框架,可以用于快速搭建神经网 络模型,keras 为支持快速实验而生,能够把想法迅速转换为结果,是深度学习 框架之中最终易上手
原创
发布博客 2022.05.12 ·
85 阅读 ·
0 点赞 ·
0 评论

一层神经网络实现鸢尾花数据集分类

一层神经网络实现鸢尾花数据集分类1、数据集介绍2、程序实现2.1 数据集导入2.2 数据集乱序2.3 数据集划分成永不相见的训练集和测试集3.4 配成[输入特征,标签]对,每次喂入一小撮(batch):3.5 定义神经网路中所有可训练参数3.6 超参数设置3.7 嵌套循环迭代,with 结构更新参数,显示当前 loss3.8 计算当前参数前向传播后的准确率,显示当前准确率 acc3.9 acc/loss可视化3、完整代码:1、数据集介绍  鸢尾花数据集,其提供了 150 组鸢尾花数据,每组包括鸢尾花的
原创
发布博客 2022.05.11 ·
132 阅读 ·
0 点赞 ·
0 评论

TensorFlow基本概念与常见函数

TensorFlow基本概念与常见函数1、基本概念2、数据类型3、如何创建一个Tensor?3.1 tf.constant()3.2 tf. convert_to_tensor()3.3 可采用不同函数创建不同值的张量3.4 可采用不同函数创建符合不同分布的张量。4、常用函数4.1 tf.cast()和tf.reduce_min()4.2 tf.reduce_mean()和tf.reduce_sum()4.3 tf.Variable()4.4 利用 TensorFlow 中函数对张量进行四则运算4.5 利用
原创
发布博客 2022.05.11 ·
182 阅读 ·
0 点赞 ·
0 评论

网络优化方法--正则化

网络优化方法--正则化正则化1.1 正则化介绍1.2 L1正则项与L2正则项的区别1.3 正则化程序正则化1.1 正则化介绍  正则化也叫作规范化,通常用得比较多的方式是 L1 正则化和 L2 正则化。L1 和 L2 正则 化的使用实际上就是在普通的代价函数(例如均方差代价函数或交叉熵代价函数)后面加上一 个正则项,例如加上了 L1 正则项的交叉熵为:E=−1N∑i=1N[tiln⁡yi+(1−ti)ln⁡(1−yi)]+λ2N∑w∣w∣E=-\frac{1}{N} \sum_{i=1}^{N}
原创
发布博客 2022.05.08 ·
265 阅读 ·
0 点赞 ·
0 评论

网络优化方法--Dropout

网络优化方法--Dropout1、Dropout介绍2、Dropout程序1、Dropout介绍  Dropout 也是一种用于抵抗过拟合的技术,它试图改变网络本身来对网络进行优化。我 们先来了解一下它的工作机制,当我们训练一个普通的神经网络时,网络的结构可能如图所示。  Dropout 通常是在神经网络隐藏层的部分使用,使用的时候会临时关闭掉一部分的神经 元,我们可以通过一个参数来控制神经元被关闭的概率,网络结构如图所示。更详细的流程如下:在模型训练阶段我们可以先给 Dropout 参数设
原创
发布博客 2022.05.08 ·
542 阅读 ·
0 点赞 ·
0 评论

单层感知器分类案例

单层感知器分类案例1、题目及实现思路2、代码实战1、题目及实现思路  题目:假设我们有 4 个 2 维的数据,数据的特征分别是(3,3),(4,3),(1,1),(2,1)。  (3,3),(4,3) 这两个数据的标签为 1,  (1,1),(2,1)这两个数据的标签为-1。  构建神经网络来进行分类。  思路:我们要分类的数据是 2 维数据,所以只需要 2 个输入节点(一般输入数据有几个特征,我们就设置几个输入神经元),我们可以把神经元的偏置值也设置成一个输入节点。这样我们需要 3 个输入节点
原创
发布博客 2022.05.04 ·
605 阅读 ·
0 点赞 ·
0 评论

单层感知器的学习规则

单层感知器1、单层感知器介绍2、单层感知器计算示例3、单层感知器的另一种表达形式4、单层感知器的学习规则4.1 学习规则介绍4.2 单层感知器的学习规则计算5、代码实战5.1 单层感知器学习规则计算举例5.1.1 简单的实现方式5.1.2 用矩阵计算实现1、单层感知器介绍  受到生物神经网络的启发,计算机学家 Frank Rosenblatt 在 20 世纪 60 年代提出了一种 模拟生物神经网络的的人工神经网络结构,称为感知器(Perceptron)。单层感知器 结构图如下。  图中x1,x2,x
原创
发布博客 2022.05.04 ·
767 阅读 ·
0 点赞 ·
0 评论

分布式基础概念总结

分布式基础概念总结分布式基础概念2.1 微服务2.2 集群&分布式节点2.3 远程调用2.4 负载均衡2.5 服务注册于发现2.6 服务配置中心2.7 服务熔断&服务降级2.8 API网关项目笔记来自于尚硅谷的谷粒商城视频教程:视频链接分布式基础概念2.1 微服务  微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个小服务运行在自 己的进程中,并使用轻量级机制通信,通常是 HTTP API。这些服务围绕业务能力来构建, 并通过完全自动化部署机制来独立部署。这些服务使
原创
发布博客 2022.05.02 ·
496 阅读 ·
1 点赞 ·
0 评论

SpringCloud Alibaba Seata处理分布式事务

SpringCloud Alibaba Seata处理分布式事务1、分布式事务问题2、Seata简介2.1 Seata是什么?2.2 Seata能做什么?2.3 下载3、Seata-Server安装3.1 Seata-Server的zip文件解压并修改配置3.2 mysql8.0数据库新建数据库库seata3.3 在seata库里面建表3.4 修改conf目录下面的registry.conf配置文件3.5 启动测试4、订单/库存/账户业务数据库准备4.1 分布式事务业务说明4.2 创建业务数据库4.3对上
原创
发布博客 2022.04.19 ·
1143 阅读 ·
0 点赞 ·
1 评论
加载更多