LeetCode 2188 完成比赛的最少时间

该博客讨论了一种动态规划解决方案,用于在给定轮胎更换时间和圈数限制下,确定完成赛车比赛的最短时间。通过预处理每个轮胎的最短圈速和动态规划状态转移方程,计算出每圈的最优轮胎选择,从而找到最小总耗时。示例展示了如何应用该算法来解决具体问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个下标从 0 开始的二维整数数组 tires ,其中 tires[i] = [fi, ri] 表示第 i 种轮胎如果连续使用,第 x 圈需要耗时 fi * ri(x-1) 秒。 比方说,如果 fi = 3 且 ri = 2 ,且一直使用这种类型的同一条轮胎,那么该轮胎完成第 1 圈赛道耗时 3 秒,完成第 2 圈耗时 3 * 2 = 6 秒,完成第 3 圈耗时 3 * 22 = 12 秒,依次类推。 同时给你一个整数 changeTime 和一个整数 numLaps 。 比赛总共包含 numLaps 圈,你可以选择 任意 一种轮胎开始比赛。每一种轮胎都有 无数条 。每一圈后,你可以选择耗费 changeTime 秒 换成 任意一种轮胎(也可以换成当前种类的新轮胎)。 请你返回完成比赛需要耗费的 最少 时间。

示例 1:

输入:tires = [[2,3],[3,4]], changeTime = 5, numLaps = 4
输出:21
解释:
第 1 圈:使用轮胎 0 ,耗时 2 秒。
第 2 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
第 3 圈:耗费 5 秒换一条新的轮胎 0 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
总耗时 = 2 + 6 + 5 + 2 + 6 = 21 秒。
完成比赛的最少时间为 21 秒。

示例 2:

输入:tires = [[1,10],[2,2],[3,4]], changeTime = 6, numLaps = 5
输出:25
解释:
第 1 圈:使用轮胎 1 ,耗时 2 秒。
第 2 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 3 圈:耗时 6 秒换一条新的轮胎 1 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 5 圈:耗时 6 秒换成轮胎 0 ,然后耗时 1 秒完成这一圈。
总耗时 = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 秒。
完成比赛的最少时间为 25 秒。

动态规划~
dp[i] 为第 i 圈用的最少时间,在第 j (0 < j < i) 圈换轮胎,则有状态转移方程:
dp[i] = min{dp[j] + minTime[i-j]} + changeTime
minTime[i] 表示完成 i 圈赛道所需的最短时间,可以预处理算出来。在预处理时,对某个轮胎 tire 而言,如果当前圈需要的时间已经大于等于 changeTime + tire[0],就没有必要继续使用,可以以此为条件求出所有轮胎的最大使用圈数 maxLoop,不难发现这个值最大不超过 18。
AC 代码如下:

class Solution {
public:
    int minimumFinishTime(vector<vector<int>> &tires, int changeTime, int numLaps) {
        vector<int> minTime(18, INT32_MAX);
        int maxLoop = 0;
        for (const auto &tire: tires) {
            long long lap = tire[0], time = tire[0];
            for (int i = 1; lap < changeTime + tire[0]; ++i) {
                minTime[i] = min(minTime[i], static_cast<int>(time));
                lap *= tire[1];
                time += lap;
                maxLoop = max(maxLoop, i);
            }
        }
        vector<int> dp(numLaps + 1, INT32_MAX);
        dp[0] = 0;
        for (int i = 1; i <= numLaps; i++) {
            for (int j = i - 1; j >= 0 && i - j <= maxLoop; j--) {
                dp[i] = min(dp[i], dp[j] + minTime[i - j] + changeTime);
            }
        }
        return dp[numLaps] - changeTime;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺 崽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值