给你一个下标从 0 开始的二维整数数组 tires ,其中 tires[i] = [fi, ri] 表示第 i 种轮胎如果连续使用,第 x 圈需要耗时 fi * ri(x-1) 秒。 比方说,如果 fi = 3 且 ri = 2 ,且一直使用这种类型的同一条轮胎,那么该轮胎完成第 1 圈赛道耗时 3 秒,完成第 2 圈耗时 3 * 2 = 6 秒,完成第 3 圈耗时 3 * 22 = 12 秒,依次类推。 同时给你一个整数 changeTime 和一个整数 numLaps 。 比赛总共包含 numLaps 圈,你可以选择 任意 一种轮胎开始比赛。每一种轮胎都有 无数条 。每一圈后,你可以选择耗费 changeTime 秒 换成 任意一种轮胎(也可以换成当前种类的新轮胎)。 请你返回完成比赛需要耗费的 最少 时间。
示例 1:
输入:tires = [[2,3],[3,4]], changeTime = 5, numLaps = 4
输出:21
解释:
第 1 圈:使用轮胎 0 ,耗时 2 秒。
第 2 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
第 3 圈:耗费 5 秒换一条新的轮胎 0 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 0 ,耗时 2 * 3 = 6 秒。
总耗时 = 2 + 6 + 5 + 2 + 6 = 21 秒。
完成比赛的最少时间为 21 秒。
示例 2:
输入:tires = [[1,10],[2,2],[3,4]], changeTime = 6, numLaps = 5
输出:25
解释:
第 1 圈:使用轮胎 1 ,耗时 2 秒。
第 2 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 3 圈:耗时 6 秒换一条新的轮胎 1 ,然后耗时 2 秒完成这一圈。
第 4 圈:继续使用轮胎 1 ,耗时 2 * 2 = 4 秒。
第 5 圈:耗时 6 秒换成轮胎 0 ,然后耗时 1 秒完成这一圈。
总耗时 = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 秒。
完成比赛的最少时间为 25 秒。
动态规划~
设 dp[i] 为第 i 圈用的最少时间,在第 j (0 < j < i) 圈换轮胎,则有状态转移方程:
dp[i] = min{dp[j] + minTime[i-j]} + changeTime
minTime[i] 表示完成 i 圈赛道所需的最短时间,可以预处理算出来。在预处理时,对某个轮胎 tire 而言,如果当前圈需要的时间已经大于等于 changeTime + tire[0],就没有必要继续使用,可以以此为条件求出所有轮胎的最大使用圈数 maxLoop,不难发现这个值最大不超过 18。
AC 代码如下:
class Solution {
public:
int minimumFinishTime(vector<vector<int>> &tires, int changeTime, int numLaps) {
vector<int> minTime(18, INT32_MAX);
int maxLoop = 0;
for (const auto &tire: tires) {
long long lap = tire[0], time = tire[0];
for (int i = 1; lap < changeTime + tire[0]; ++i) {
minTime[i] = min(minTime[i], static_cast<int>(time));
lap *= tire[1];
time += lap;
maxLoop = max(maxLoop, i);
}
}
vector<int> dp(numLaps + 1, INT32_MAX);
dp[0] = 0;
for (int i = 1; i <= numLaps; i++) {
for (int j = i - 1; j >= 0 && i - j <= maxLoop; j--) {
dp[i] = min(dp[i], dp[j] + minTime[i - j] + changeTime);
}
}
return dp[numLaps] - changeTime;
}
};