前言:上传文件一旦过大,如果一次发送的话,那么请求的时间就会非常的长,一旦请求的过程中出现一些问题,比如网络断开,不得不把文件重新上传一遍,非常麻烦且浪费资源,所以在做大文件上传的时候往往要对大文件进行分片,在客户端首先把整个大文件数据分成一个个的数据小块,可以把每一个小块想象成一个单独的小文件,然后利用单文件上传,把这些小文件依次上传到服务器,当最后把文件全部传输完成后,在服务器端使用程序,把整个文件的小数据组装起来,形成一个完整的文件。
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>大文件上传</title>
</head>
<body>
<!-- 引入 spark-md5 用来计算出文件的 hash 值 传给服务器用于鉴别文件 -->
<!-- 因为文件过大,需要很长时间才能计算出hash值,因此实际开发中运算过程不会放在主线程中,颗粒利用web worker 单独开一个线程来处理,避免浏览器卡死 -->
<!-- 单独放到一个线程中,还是有可能会导致卡顿,因为他是一个CPU特别密集的任务 -->
<!-- 在类似b站的网站会这样处理: 当发现文件特别大的时候先粗略对文件分成一些大块,然后慢慢计算小块 -->
<script src="./spark-md5.js"></script>
<input type="file" />
<script>
const inp = document.querySelector('input');
inp.onchange = async (e) => {
const file = e.target.files[0]; // 使用 e.target 修正 this 指向问题
if (!file) {
return;
}
const chunks = createChunks(file, 10 * 1024 * 1024);
const result = await hash(chunks);
console.log("文件的 MD5 哈希值:", result); // 输出结果
}
// 得到文件的 hash 因为文件很大不能全部读取才计算hash 需要分块算法 增量算法
function hash(chunks) {
return new Promise((resolve, reject) => {
if (typeof SparkMD5 === 'undefined') { // 检查 SparkMD5 是否已定义
reject(new Error('SparkMD5 未加载'));
return;
}
const spark = new SparkMD5.ArrayBuffer(); // 使用 ArrayBuffer 方式
function _read(i) {
if (i >= chunks.length) {
resolve(spark.end());
return; // 读取完成
}
const blob = chunks[i];
const reader = new FileReader();
reader.onload = e => {
const bytes = e.target.result; // 读取到字节数组
spark.append(bytes);
_read(i + 1);
};
reader.readAsArrayBuffer(blob); // 使用 readAsArrayBuffer
}
_read(0);
});
}
// 切片函数
function createChunks(file, chunkSize) {
const result = [];
for (let i = 0; i < file.size; i += chunkSize) {
result.push(file.slice(i, i + chunkSize));
}
return result;
}
</script>
</body>
</html>