找出n个自然数(1,2,3,4…n)中取r个数的组合。 按照从小到大的顺序输出。
给出两种算法:
法一:回溯法(非递归法)
用n=5,r=3来作例子
用数组x[r+1]来存储组合,为方便这里,从x[1]存储。
规定x[1]~x[3]按从小到大排列,由此可以得出x[i]上所填数的最大值和最小值。
x[1]min=1, x[2]min=2, x[3]min=3;
x[3]max=5, x[2]max=4, x[1]max=3;
由此可以推广到一般规律:x[i]min=i, x[i]max=n-r+i;
#include<iostream>
using namespace std;
int main()
{
int n=5,r=3,top=r,i;
int sum=0;
int x[r+1];
//初始化钱r位数组,全部填写最小值
for(i=1; i<r+1; i++)
x[i]=i;
while(top>0)
{
//top<r时,top前进,填写数组
while(top<r)
{
top++;
x[top]=x[top-1]+1;
}
//填最后一位
while(top==r&&x[top]<n-r+top+1)
{
for(i=1; i<r+1; i++)//先输出已经出现的组合
cout<<x[i]<<" ";
cout<<endl;
sum++;
x[top]++;//最后一位加一继续输出直到最大
}
//当前top指向的值大于最大值时,回溯
while(x[top]>n-r+top)
{
top--;
x[top]++;//回溯后当前值加一
}
}
cout<<"总="<<sum<<endl;
return 0;
}
运行结果:
法二:递归法
#include<iostream>
using namespace std;
int x[100];//全局变量记录组合
void f(int n,int r)
{
int i,j;
for(i=n;i>=r;i--)//给第r位填上从r~n的值
{
x[r]=i;
if(r>1) f(i-1,r-1);//当第r位值为i时,前面的r-1位的值从1~i-1中选值
else //当第一位也被填上值,输出
{
for(j=x[0];j>0;j--)//用x[0]记录最初的r
cout<<x[j]<<" ";
cout<<endl;
}
}
}
int main()
{
int n=5,r=3;
x[0]=r;
f(n,r);
return 0;
}
(递归算法参考《算法设计与分析》教材,侵删)