找出n个自然数(1,2,3,4......n)中取r个数的组合

找出n个自然数(1,2,3,4…n)中取r个数的组合。 按照从小到大的顺序输出。

给出两种算法:
法一:回溯法(非递归法)
用n=5,r=3来作例子
用数组x[r+1]来存储组合,为方便这里,从x[1]存储。
规定x[1]~x[3]按从小到大排列,由此可以得出x[i]上所填数的最大值和最小值。
x[1]min=1, x[2]min=2, x[3]min=3;
x[3]max=5, x[2]max=4, x[1]max=3;
由此可以推广到一般规律:x[i]min=i, x[i]max=n-r+i
回溯法

#include<iostream>
using namespace std;
int main()
{
    int n=5,r=3,top=r,i;
    int sum=0;
    int x[r+1];
    //初始化钱r位数组,全部填写最小值
    for(i=1; i<r+1; i++)
        x[i]=i;
    while(top>0)
    {
        //top<r时,top前进,填写数组
        while(top<r)
        {
            top++;
            x[top]=x[top-1]+1;
        }
        //填最后一位
        while(top==r&&x[top]<n-r+top+1)
        {
            for(i=1; i<r+1; i++)//先输出已经出现的组合
                cout<<x[i]<<" ";
            cout<<endl;
            sum++;
            x[top]++;//最后一位加一继续输出直到最大
        }
        //当前top指向的值大于最大值时,回溯
        while(x[top]>n-r+top)
        {
            top--;
            x[top]++;//回溯后当前值加一
        }
    }
    cout<<"总="<<sum<<endl;
    return 0;
}

运行结果:
运行结果

法二:递归法

#include<iostream>
using namespace std;
int x[100];//全局变量记录组合
void f(int n,int r)
{
    int i,j;
    for(i=n;i>=r;i--)//给第r位填上从r~n的值
    {
        x[r]=i;
        if(r>1) f(i-1,r-1);//当第r位值为i时,前面的r-1位的值从1~i-1中选值
        else       //当第一位也被填上值,输出
        {
            for(j=x[0];j>0;j--)//用x[0]记录最初的r
                cout<<x[j]<<" ";
            cout<<endl;
        }
    }
}
int main()
{
    int n=5,r=3;
    x[0]=r;
    f(n,r);
    return 0;
}

(递归算法参考《算法设计与分析》教材,侵删)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值