leetcode72. 编辑距离 hard

传送门

题目:给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作:
1.插入一个字符
2.删除一个字符
3.替换一个字符

输入:word1 = “horse”, word2 = “ros” 输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)


题目给定了两个单词,设为 A 和 B,这样我们就能够六种操作方法。
但我们可以发现,如果我们有单词 A 和单词 B:

对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;

同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;

对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

这样以来,本质不同的操作实际上只有三种:

1.在单词 A 中插入一个字符;
2.在单词 B 中插入一个字符;
3.修改单词 A 的一个字符。

这样以来,我们就可以把原问题转化为规模较小的子问题。我们用 A = horse,B = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的。

在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;

在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;

修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)

所以,
word1[i] == word2[j]:dp[i][j] = dp[i-1][j-1];

word1[i] != word2[j],dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1

dp[i-1][j-1] 表示替换操作,dp[i-1][j] 表示删除(也可以看成插入)操作,dp[i][j-1] 表示插入操作

 	public int minDistance(String word1, String word2) {
        int len1 = word1.length(), len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        for (int i = 1; i <= len1; ++i) dp[i][0] = i;
        for (int i = 1; i <= len2; ++i) dp[0][i] = i;

        for (int i = 1; i <= len1; ++i) {
            for (int j = 1; j <= len2; ++j) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1))
                    dp[i][j] = dp[i - 1][j - 1];
                else 
                    dp[i][j] = 1 + Math.min(
						Math.min(dp[i - 1][j], dp[i][j - 1]), 
						dp[i - 1][j - 1]);
            }
        }
        return dp[len1][len2];
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值