区间相交问题
Description
给定x轴上n个闭区间。去掉尽可能少的闭区间,使剩下的闭区间都不相交。
给定n个闭区间,计算去掉的最少闭区间数。
Input
输入第一行是正整数n ( n < 100 ),表示闭区间数。接下来的n行中,每行有两个整数(可以是负数),分别表示闭区间的两个数端点。
Output
输出去掉的最少闭区间数
Sample Input
3
10 20
10 15
20 15
Sample Output
2
思路:
贪心思想,要想去掉最少区间数,意思就剩余最多的区间;
把区间按照右端点从小到大的顺序排列;//这样全部区间中最远的右端点就确定下来了,最小左端点也确定了,就可以看成一个大区间,我们来处理了,我们按照该排序遍历的时候,把与前一个区间相交的区间去掉就行了,这样就能“剩余最多的区间”。
先让 r = 第一个区间的右端点;
从前往后遍历所有区间,如果遇到区间的左端点小于 r ,则这个区间就要删去;
如果遇到区间的左端点大于 r ,此区间保留,改变 r =此区间的右端点;
注意:输入的每区间可能不是按照左端点、右端点的顺序输入的,必要时需要调换位置
参考于:https://blog.csdn.net/admin__/article/details/81112060
下面是代码:
#include<bits/stdc++.h>
using namespace std;
struct node{
int l;
int r;
}q[105];
bool operator < (struct node A,struct node B)
{
return A.r <B.r ;
}
int main(void)
{
int n,r;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d",&q[i].l ,&q[i].r );
if(q[i].l >q[i].r )
swap(q[i].l ,q[i].r );//保证输入的区间l<r
}
sort(q+1,q+n+1);
r=q[1].r ;
int count=0;
for(int i=2;i<=n;i++){
if(q[i].l <=r)//每个区域都是闭区域
{
count++;//当前区间要删去,即r保持不变,count++;
}
else
r=q[i].r ;
}
printf("%d",count);
return 0;
}