普里姆算法

普里姆算法

应用场景-修路问题

看一个应用场景和问题:

在这里插入图片描述

  1. 有胜利乡有 7 个村庄(A, B, C, D, E, F, G) ,现在需要修路把 7 个村庄连通
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5 公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
    思路: 将 10 条边,连接即可,但是总的里程数不是最小. 正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少

最小生成树

修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称 MST。
给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树

  1. N 个顶点,一定有 N-1 条边

  2. 包含全部顶点

  3. N-1 条边都在图中

  4. 举例说明(如图:)

  5. 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
    在这里插入图片描述

普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含 n 个顶点的连通图中,找出只有(n-1)条边包含所有 n 个顶点的
连通子图,也就是所谓的极小连通子图
普利姆的算法如下:

  1. 设 G=(V,E)是连通网,T=(U,D)是最小生成树,V,U 是顶点集合,E,D 是边的集合
  2. 若从顶点 u 开始构造最小生成树,则从集合 V 中取出顶点 u 放入集合 U 中,标记顶点 v 的 visited[u]=1
  3. 若集合 U 中顶点 ui 与集合 V-U 中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将
    顶点 vj 加入集合 U 中,将边(ui,vj)加入集合 D 中,标记 visited[vj]=1
  4. 重复步骤②,直到 U 与 V 相等,即所有顶点都被标记为访问过,此时 D 中有 n-1 条边
  5. 提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解. 6) 图解普利姆算

在这里插入图片描述
普里姆算法最佳实践(修路问题)

在这里插入图片描述

  1. 有胜利乡有 7 个村庄(A, B, C, D, E, F, G) ,现在需要修路把 7 个村庄连通
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5 公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短
package algorithm;

import java.util.Arrays;
import java.util.concurrent.ForkJoinPool;

public class PrimAlgorithm {

    public static void main(String[] args) {

        //测试看看图是否创建 ok

        char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};


        int verxs=data.length;

        //邻接矩阵的关系使用二维数组表示,10000 这个大数,表示两个点不联通

        int [][]weight ={
                {10000,5,7,10000,10000,10000,2},
                {5,10000,10000,9,10000,10000,3},
                {7,10000,10000,10000,8,10000,10000},
                {10000,9,10000,10000,10000,4,10000},
                {10000,10000,8,10000,10000,5,4},
                {10000,10000,10000,4,5,10000,6},
                {2,3,10000,10000,4,6,10000},};
        //创建 MGraph 对象
        MGraph graph = new MGraph(verxs);

        //创建一个 MinTree 对象
        MinTree minTree = new MinTree();

        minTree.createGraph(graph,verxs,data,weight);

        //输出
        minTree.showGraph(graph);

        //测试普利姆算法
        minTree.prim(graph,1);

    }
}

//创建最小生成树->村庄的图
class MinTree {


    /**
     * 创建图的邻接矩阵
     *
     * @param graph  图对象
     * @param verxs  图对应的顶点个数
     * @param data   图的各个顶点的值
     * @param weight 图的邻接矩阵
     */
    public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
        int i, j;
        for (i = 0; i < verxs; i++) {
            //顶点
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }

    //显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for (int[] link : graph.weight) {
            System.out.println(Arrays.toString(link));
        }
    }

    //编写 prim 算法,得到最小生成树

    /**
     * @param graph 图
     * @param v     表示从图的第几个顶点开始生成'A'->0'B'->1...
     */
    public void prim(MGraph graph, int v) {
        //visited[] 标记结点(顶点)是否被访问过

        int visited[] = new int[graph.verxs];

        //visited[] 默认元素的值都是 0, 表示没有访问过
       /* for (int i = 0; i < graph.verxs; i++) {
            visited[i] = 0;
        }*/

        //把当前这个结点标记为已访问
        visited[v] = 1;
        //h1 和 h2 记录两个顶点的下标

        int h1 = -1;
        int h2 = -1;

        //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
        int minWeight = 10000;

        for (int k = 1; k < graph.verxs; k++) {
            //因为有 graph.verxs 顶点,普利姆算法结束后,有 graph.verxs-1 边
            //这个是确定每一次生成的子图 ,和哪个结点的距离最近
            for (int i = 0; i < graph.verxs; i++) {
                //i 结点表示被访问过的结点
                for (int j = 0; j < graph.verxs; j++) {
                    //j 结点表示还没有访问过的结点
                    if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                        //替换 minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
                        minWeight = graph.weight[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到一条边是最小
            System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);

            //将当前这个结点标记为已经访问
            visited[h2] = 1;

            //minWeight 重新设置为最大值 10000
            minWeight = 10000;
        }
    }
}

class MGraph{
    //表示图的节点个数
    int verxs;
    //存放结点数据
    char[] data;
    //存放边,就是我们的邻接矩阵
    int[][]weight;


    public MGraph(int verxs){
        this.verxs=verxs;
        data=new char[verxs];
        weight=new int[verxs][verxs];
    }

}


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值