LeetCode 1020. 飞地的数量

1020. 飞地的数量

给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。

一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。

返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

示例 1:

img

输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]
输出:3
解释:有三个 1 被 0 包围。一个 1 没有被包围,因为它在边界上。

示例 2:

img

输入:grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]]
输出:0
解释:所有 1 都在边界上或可以到达边界。

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 500
  • grid[i][j] 的值为 01

二、方法一

深度优先搜索

class Solution {
    int m;
    int n;
    boolean[][] visited;
    public int numEnclaves(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        visited = new boolean[m][n];
        for (int i = 0; i < m; i++) {
            dfs(grid, i, 0);
            dfs(grid, i, n - 1);
        }
        for (int j = 1; j < n - 1; j++) {
            dfs(grid, 0, j);
            dfs(grid, m - 1, j);
        }
        int res = 0;
        for (int i = 1; i < m - 1; i++) {
            for (int j = 1; j < n - 1; j++) {
                if (grid[i][j] == 1 && !visited[i][j]) {
                    res++;
                }
            }
        }
        return res;
    }
    public void dfs(int[][] grid, int x, int y) {
        if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y] || grid[x][y] == 0) {
            return;
        }
        visited[x][y] = true;
        dfs(grid, x + 1, y);
        dfs(grid, x - 1, y);
        dfs(grid, x, y + 1);
        dfs(grid, x, y - 1);
    }
}

复杂度分析

  • 时间复杂度:O(mn),其中 m 和 n 分别是网格 grid 的行数和列数。深度优先搜索最多访问每个单元格一次,需要 O(mn)的时间,遍历网格统计飞地的数量也需要 O(mn) 的时间。

  • 空间复杂度:O(mn),其中 m 和 n 分别是网格 grid 的行数和列数。空间复杂度主要取决于 visited 数组和递归调用栈空间,空间复杂度是O(mn)。

三、方法二

广度优先搜索

class Solution {
    public int numEnclaves(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        Queue<int[]> queue = new LinkedList<>();
        boolean[][] visited = new boolean[m][n];
        int[][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
        for (int i = 0; i < m; i++) {
            if (grid[i][0] == 1) {
                visited[i][0] = true;
                queue.add(new int[]{i, 0});
            }
            if (grid[i][n - 1] == 1) {
                visited[i][n - 1] = true;
                queue.add(new int[] {i, n - 1});
            }
        }
        for (int j = 1; j < n - 1; j++) {
            if (grid[0][j] == 1) {
                visited[0][j] = true;
                queue.add(new int[]{0, j});
            }
            if (grid[m - 1][j] == 1) {
                visited[m - 1][j] = true;
                queue.add(new int[]{m - 1, j});
            }
        }
        while(!queue.isEmpty()) {
            int[] pos = queue.poll();
            int x = pos[0];
            int y = pos[1];
            for (int[] dir : dirs) {
                int row = x + dir[0];
                int col = y + dir[1];
                if (row >= 0 && row < m && col >= 0 && col < n && grid[row][col] == 1 && !visited[row][col]) {
                    visited[row][col] = true;
                    queue.add(new int[]{row, col});
                }
            }
        }
        int res = 0;
        for (int i = 1; i < m - 1; i++) {
            for (int j = 1; j < n - 1; j++) {
                if (grid[i][j] == 1 && !visited[i][j]) {
                    res++;
                }
            }
        }
        return res;
    }
}

复杂度分析

  • 时间复杂度:O(mn),其中 m 和 n 分别是网格 grid 的行数和列数。广度优先搜索最多访问每个单元格一次,需要 O(mn) 的时间,遍历网格统计飞地的数量也需要O(mn) 的时间。

  • 空间复杂度:O(mn),其中 m 和 n 分别是网格 \grid 的行数和列数。空间复杂度主要取决于 visited 数组和队列空间,空间复杂度是 O(mn)。

四、方法三

并查集

class Solution {
    public int numEnclaves(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        UnionFind union = new UnionFind(grid);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j< n; j++) {
                if (grid[i][j] == 1) {
                    int index = i * n + j;
                    if (j + 1 < n && grid[i][j + 1] == 1) {
                        union.union(index, index + 1);
                    }
                    if (i + 1 < m && grid[i + 1][j] == 1) {
                        union.union(index, index + n);
                    }
                }
            }
        }
        int res = 0;
        for (int i = 1; i < m - 1; i++) {
            for (int j = 1; j < n - 1; j++) {
                if (grid[i][j] == 1 && !union.isEdge(i * n + j)) {
                    res++;
                }
            }
        }
        return res;
    }

    class UnionFind{
        int[] p;
        int[] r;
        boolean[] edge;
        public UnionFind(int[][] grid) {
            int m = grid.length;
            int n = grid[0].length;
            p = new int[m * n];
            r = new int[m * n];
            edge = new boolean[m * n];
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    if (grid[i][j] == 1) {
                        int index = i * n + j;
                        p[index] = index;
                        if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
                            edge[index] = true;
                        }
                    }
                }
            }
        }
        public int find(int x) {
            if (p[x] != x) {
                return find(p[x]);
            }
            return p[x];
        }
        public void union(int x, int y) {
            int rootx = find(x);
            int rooty = find(y);
            if (r[rootx] > r[rooty]) {
                p[rooty] = rootx;
                edge[rootx] |= edge[rooty];
            } else if (r[rooty] > r[rootx]) {
                p[rootx] = rooty;
                edge[rooty] |= edge[rootx];
            } else {
                p[rooty] = rootx;
                edge[rootx] |= edge[rooty];
                r[rootx]++;
            }
        }
        public boolean isEdge(int i) {
            return edge[find(i)];
        }
    }
}

复杂度分析

  • 时间复杂度:O(mn×α(mn)),其中 m 和 n 分别是网格grid 的行数和列数,α 是反阿克曼函数。这里的并查集使用了路径压缩和按秩合并,单次操作的时间复杂度是 O(α(mn)),因此整个网格的并查集操作的时间复杂度是O(mn×α(mn)),并查集操作之后需要O(mn×α(mn)) 的时间再次遍历网格统计飞地的数量,因此总时间复杂度是 O(mn×α(mn))。

  • 空间复杂度:O(mn),其中 m 和 n 分别是网格 grid 的行数和列数。并查集需要 O(mn) 的空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值