1399. 统计最大组的数目
给你一个整数 n
。请你先求出从 1
到 n
的每个整数 10 进制表示下的数位和(每一位上的数字相加),然后把数位和相等的数字放到同一个组中。
请你统计每个组中的数字数目,并返回数字数目并列最多的组有多少个。
示例 1:
输入:n = 13
输出:4
解释:总共有 9 个组,将 1 到 13 按数位求和后这些组分别是:
[1,10],[2,11],[3,12],[4,13],[5],[6],[7],[8],[9]。总共有 4 个组拥有的数字并列最多。
示例 2:
输入:n = 2
输出:2
解释:总共有 2 个大小为 1 的组 [1],[2]。
示例 3:
输入:n = 15
输出:6
示例 4:
输入:n = 24
输出:5
提示:
1 <= n <= 10^4
二、方法一
哈希存储统计即可
class Solution {
public int countLargestGroup(int n) {
Map<Integer, Integer> hashMap = new HashMap<Integer, Integer>();
int maxValue = 0;
for (int i = 1; i <= n; ++i) {
int key = 0, i0 = i;
while (i0 != 0) {
key += i0 % 10;
i0 /= 10;
}
hashMap.put(key, hashMap.getOrDefault(key, 0) + 1);
maxValue = Math.max(maxValue, hashMap.get(key));
}
int count = 0;
for (Map.Entry<Integer, Integer> kvpair : hashMap.entrySet()) {
if (kvpair.getValue() == maxValue) {
++count;
}
}
return count;
}
}
复杂度分析
-
时间复杂度:对数 x 求数位和的时间为 O(log 10x)=O(logx),因此总时间代价为O(nlogn),选出最大元素和遍历哈希表的时间代价均为 O(n),故渐渐时间复杂度 O(nlogn)+O(n)=O(nlogn)。
-
空间复杂度:使用哈希表作为辅助空间,n 的数位个数为 O(log 10 n)=O(logn),每一个数位都在 [0,9] 之间,故哈希表最多包含的键的个数为 O(10logn)=O(logn),渐进空间复杂度为 O(logn)。