链接:https://ac.nowcoder.com/acm/contest/7854/A
来源:牛客网
题目描述
You are given a positive integer n.
Find a sequence of fractions ai / bi, i = 1…k (where ai and bi are positive integers) for some k such that:
- bi divides n, 1 < bi < n for i = 1…k
- 1 ≤ ai < bi for i = 1…k
- ∑i=1kaibi=1−1n\sum_{i=1}^k\frac{a_i}{b_i}=1-\frac1n∑i=1kbiai=1−n1
输入描述:
The input consists of a single integer n (2 ≤ n ≤ 109).
输出描述:
In the first line print “YES” if there exists such a sequence of fractions or “NO” otherwise. If there exists such a sequence, next lines should contain a description of the sequence in the following format. The second line should contain integer k (1 ≤ k ≤ 100 000) — the number of elements in the sequence. It is guaranteed that if such a sequence exists, then there exists a sequence of length at most 100 000. Next k lines should contain fractions of the sequence with two integers ai and bi on each line.
示例1
输入
复制2
2
输出
复制NO
NO
示例2
输入
复制6
6
输出
复制YES 2 1 2 1 3
YES 2 1 2 1 3
说明
In the second example there is a sequence 1/2, 1/3 such that 1/2 + 1/3 = 1 − 1/6
题意:使用分母小于n的分数,构造(n-1)/n
题解:
数学规律,当此分数可以被加出来时(n-1)/n必定可以由两个分数构成而且这两个数的分母的积 == n
#include<bits/stdc++.h>
#include<bitset>
#include<unordered_map>
#define pb push_back
#define bp __builtin_popcount
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=1e3+10;
const int MOD=1e4+7;
const double PI=3.14159265;
int lowbit(int x){return x&-x;}
int main()
{
int n;
cin>>n;
for(int i=2;i*i<=n;++i)//找因子
{
if(n%i==0&&__gcd(i,n/i)==1)//找因子
{
int x=i,y=n/i;//x为小因子,y为大因子
for(int a=1;a<x;++a)//确定a的值,a < b
{
if(n-1-a*x>0&&((n-1-a*y)%x==0))//确定减去较大因子之后能够整除第二个因子
//则其就可以构成(n-1)/n
{
cout << "YES" << endl;
cout << 2 << endl;
cout << a << " " << x << endl;
cout << (n - 1 - a * y) / x << " " << y << endl;
//system("pause");
return 0;
}
}
}
}
cout << "NO" << endl;
//system("pause");
return 0;
}