- 博客(178)
- 资源 (4)
- 收藏
- 关注
原创 【FreeRTOS实战】信号量专题:从底层原理到中断同步,STM32F407按键例程全解析
本文深入解析FreeRTOS信号量机制,重点介绍二进制信号量和计数信号量的原理与应用。二进制信号量用于任务同步和中断通信,计数信号量则用于资源管理和事件计数。文章详细讲解了信号量的API函数使用方法,包括创建、获取和释放操作,并特别强调中断中使用信号量的注意事项。通过STM32F407按键中断同步的实例,演示了信号量在嵌入式系统中的实际应用,帮助开发者掌握多任务同步的关键技能。
2025-12-23 21:43:38
401
原创 FreeRTOS队列实战:轻松解决多任务通信3大难题
本文介绍了FreeRTOS任务间通信的重要机制——队列。在嵌入式多任务系统中,队列解决了数据共享的竞态条件、数据丢失和同步困难等问题。文章详细讲解了队列的FIFO特性、创建与使用API(xQueueCreate、xQueueSend、xQueueReceive等),以及阻塞超时、队列状态处理等高级功能。最后通过STM32F407开发板的温度传感器实例,展示了如何配置CubeMX并实现温度数据采集与显示的任务间通信。队列机制使多任务程序能高效协同工作,是FreeRTOS开发的关键技术之一。
2025-12-22 15:09:39
384
原创 【FreeRTOS实战】互斥锁专题
本文介绍了FreeRTOS中互斥锁的实际应用案例,重点演示了优先级反转问题及其解决方案。通过STM32F407开发板实现,详细展示了8步CubeMX配置流程,包括时钟、串口、FreeRTOS任务和互斥锁的初始化设置。案例1通过高、中、低三个优先级任务的交互,模拟优先级反转现象,并演示如何使用互斥锁解决这一问题。案例2则展示了互斥锁在保护共享内存资源中的应用,通过代码示例说明如何确保对共享数据结构的原子性访问。全文提供了完整的硬件连接说明和配置截图,帮助开发者快速理解和实现互斥锁在实际项目中的应用。
2025-12-21 16:50:05
933
原创 【FreeRTOS实战】互斥锁专题:从理论到STM32应用题
【FreeRTOS实战】互斥锁专题:解决优先级反转问题的利器 本文深入探讨FreeRTOS中互斥锁的应用,重点解决多任务系统中的优先级反转问题。主要内容包括: 优先级反转问题分析 现象:高优先级任务被低优先级任务阻塞 危害:破坏系统实时性,导致关键任务延迟 互斥锁解决方案 与二进制信号量的本质区别:所有权和优先级继承机制 优先级继承原理:临时提升低优先级任务的优先级 实战应用 互斥锁创建、获取和释放的完整API使用流程 递归互斥锁解决嵌套调用问题 使用注意事项和常见陷阱 嵌入式开发价值 提供完整代码示例 解
2025-12-21 16:43:09
1116
原创 嵌入式由嵌入深----深入理解FreeRTOS任务管理
本文深入探讨了FreeRTOS任务管理的核心概念,包括任务的基本定义、四种状态转换(运行态、就绪态、阻塞态和挂起态)及其转换条件。文章详细讲解了任务优先级机制(0-31级)和可能出现的优先级反转问题,介绍了FreeRTOS的两种调度策略(抢占式和协作式)以及时间片调度算法。最后提供了常用任务管理API函数的使用方法,并通过STM32CubeMX工程配置实例,展示了如何创建多任务优先级演示程序。掌握这些知识将帮助开发者更好地利用FreeRTOS构建复杂的嵌入式系统。
2025-12-19 07:00:00
558
原创 FreeRTOS环境搭建与第一个任务创建
本文详细介绍了如何从零开始搭建FreeRTOS开发环境并创建第一个LED闪烁任务。主要内容包括:开发环境准备(硬件选择、软件安装)、使用STM32CubeMX配置FreeRTOS(时钟、外设、任务参数设置)、Keil MDK项目生成及LED闪烁任务代码编写。通过本文,读者可以快速掌握FreeRTOS基本开发流程,实现简单的多任务调度功能。
2025-12-18 13:44:26
767
1
原创 FreeRTOS 简介:轻量开源的嵌入式
本系列文章旨在为嵌入式开发者提供全面、实用的FreeRTOS学习指南,从基础概念到高级应用,结合实际项目案例,帮助读者快速掌握FreeRTOS的核心技术并应用到实际开发中。
2025-12-14 10:32:53
1033
原创 什么是FreeRTOS?为什么它是嵌入式开发的首选?
本系列文章旨在为嵌入式开发者提供全面、实用的FreeRTOS学习指南,从基础概念到高级应用,结合实际项目案例,帮助读者快速掌握FreeRTOS的核心技术并应用到实际开发中。
2025-12-13 11:03:16
459
原创 Optics Express投稿流程!!!!!!
《Optics Express投稿指南》摘要:本文详细介绍了中科院二区、JCR Q1期刊Optics Express的投稿流程。从账号注册登录开始,逐步说明需要准备的投稿材料(合著者信息、求职信、手稿文件等),并图文展示投稿系统各环节操作要点,包括选择期刊、填写基本信息、上传文件(LaTeX压缩包、Cover Letter等)、添加共同作者、推荐审稿人、费用确认等步骤。最后提醒确认信息并提交稿件,祝愿投稿成功。全文通过11个步骤配以系统截图,为研究者提供清晰的投稿指引。
2025-11-24 10:57:19
460
原创 基于YOLO算法的医疗应用专题:第三章 数字图像处理基础实践操作(二)
本教程是基于YOLO算法的医疗应用专题:第二章 数字图像处理基础二值化是将灰度图像转换为只有两种颜色(通常是黑色和白色)的图像,这在医学图像分割、轮廓提取和特征识别中具有重要应用。在医学图像处理中,二值化方法的选择至关重要。Otsu 阈值法能够自动确定最佳阈值,在处理具有双峰直方图的医学图像时效果很好。自适应阈值方法则适合处理光照不均的图像。对于含有毛发干扰的皮肤图像,我们还演示了先进行毛发去除再二值化的方法。边缘检测是医学图像处理中的关键技术,它能够提取图像中灰度变化剧烈的区域,为病变边界识别、器官分
2025-10-28 11:05:20
888
原创 基于YOLO算法的医疗应用专题:第三章 数字图像处理基础实践操作(一)
本文介绍了医学皮肤病图像处理的基础实践操作。首先分析了医学皮肤病图像的特殊性,包括高分辨率、多模态性、灰度模糊性和局部体效应等特点。随后通过Python代码演示了如何构造模拟医学皮肤病图像,包含皮肤、病变区域、血管和毛发等典型特征。文章详细讲解了图像读取、灰度转换、属性分析等基础操作,并展示了如何计算图像统计信息和绘制直方图进行可视化分析。这些基础操作为后续基于YOLO算法的医疗图像处理应用奠定了基础,特别适用于皮肤病变检测等任务。
2025-10-28 11:05:01
863
原创 基于YOLO算法的医疗应用专题:第二章 数字图像处理基础(一)
数字图像处理与医学应用摘要 本文系统介绍了数字图像处理基础及其在医学领域的应用。重点阐述了医学图像的特殊性(高分辨率、多模态性、灰度模糊性等)和皮肤疾病图像处理的特殊需求(高清晰度、标准化采集、噪声处理等)。详细探讨了医学图像分割技术(阈值法、边缘检测、区域分割)及深度学习在其中的应用(U-Net、注意力机制等)。同时解析了色彩空间转换技术(RGB、HSV、Lab等)及其在医学影像中的特殊应用需求。文章为基于YOLO算法的医疗应用提供了重要的图像处理理论基础和技术支持,特别针对皮肤疾病检测等医学影像分析任务
2025-10-27 15:14:16
992
原创 基于YOLO算法的医疗应用专题:第二章 数字图像处理基础(二)
本文介绍了基于YOLO算法的医疗应用专题中数字图像处理基础的实验环节,重点讲解了皮肤疾病图像处理的实践操作。实验配置要求包括硬件环境、Python版本和深度学习框架等,并推荐了HAM10000、ISIC 2020等皮肤疾病数据集。通过5个实验内容详细演示了: 1)图像读取与基本处理 2)色彩空间转换 3)图像增强技术 4)基于传统方法的皮肤病变分割 5)基于深度学习的皮肤病变分割 提供了完整的Python代码示例,涵盖OpenCV、Matplotlib等库的使用,展示了从基础图像处理到高级分割技术的完整流程
2025-10-27 15:13:51
1044
原创 基于YOLO算法的医疗应用专题:第一章 计算机视觉与深度学习概述
计算机视觉作为人工智能领域的重要分支,其发展历程可以追溯到 20 世纪 50 年代。1959 年,神经生理学家 David Hubel 和 Torsten Wiesel 通过猫的视觉实验,发现视觉处理过程总是从类似特定方向边缘的简单结构开始,这一发现为 40 年后计算机视觉技术的突破性发展奠定了基础,也成为了深度学习的核心准则之一(4)。同年,Russell 和他的同学研制出了第一台数字图像扫描仪,这台仪器能够将图片转化为二进制机器可理解的灰度值,为后续的数字图像处理奠定了基础(4)。
2025-10-23 10:56:01
1342
原创 深度学习核心模型与护理场景实战:CNN与护理影像分析(二)
CNN 原理理解卷积层通过卷积核提取图像特征池化层进行降维和特征选择全连接层将特征映射到最终输出模型构建能力能够构建基础 CNN 模型架构掌握模型编译和训练流程了解模型调优策略护理影像分析理解 CNN 在伤口评估中的应用掌握数据增强技术能够解释模型预测结果PyCharm 实操技能深度学习环境配置代码编写和调试技巧项目管理和版本控制模型评估与可视化能够使用混淆矩阵评估模型掌握训练过程可视化理解卷积核和特征图的含义。
2025-10-22 13:55:10
759
原创 深度学习核心模型与护理场景实战:CNN与护理影像分析(一)
理解 CNN 的基本原理:掌握卷积层、池化层等核心组件的工作机制掌握 CNN 模型构建:能够使用 TensorFlow 在 PyCharm 中构建 CNN 模型处理护理影像数据:学会数据准备、预处理和增强技术实现伤口影像分析:能够构建 “轻度红肿 / 重度红肿” 分类模型掌握模型调优技巧:了解超参数选择和网络架构设计进行模型评估与可视化:学会使用混淆矩阵、卷积核可视化等技术本课程特别强调护理场景的实际应用,通过 “伤口影像→红肿区域识别” 这一典型案例,让你深入理解 CNN 如何在护理实践中发挥作用。
2025-10-22 13:54:16
845
原创 第三章深度学习---核心库TensorFlow 和 PyTorch 实操指南(四)
深度学习在护理领域的应用与实践指南 本教程系统介绍了TensorFlow和PyTorch在PyCharm环境下的安装配置与使用技巧,重点解决护理领域深度学习应用中的常见问题。主要内容包括: 环境配置:详细说明CUDA兼容性、pip安装失败等问题的解决方案 代码优化:提供显存不足、损失值异常等问题的处理方法 性能提升:介绍梯度裁剪、批量归一化等优化技巧 护理数据特殊处理:针对医疗数据质量参差不齐、单位不统一等问题提供专业解决方案 教程特别强调护理场景的实际应用,包含糖尿病风险预测等案例,并提供了完整的数据清洗
2025-10-20 09:30:18
1306
原创 第三章深度学习---核心库TensorFlow 和 PyTorch 实操指南(三)
掌握 TensorFlow 和 PyTorch 在 PyCharm 中的安装配置,解决 CUDA 兼容性等常见问题。,通过分析患者的基本信息、生命体征、实验室检查结果等多维数据,预测患者的护理风险等级,为护理决策提供科学依据。,通过 “糖尿病护理风险预测” 等具体案例,让在掌握技术的同时,深刻理解深度学习在护理领域的应用价值。具备用库函数实现简单神经网络的能力,能够构建护理场景的预测模型。掌握护理数据的预处理技术,能够处理缺失值、归一化等问题。具备良好的可扩展性,能够适应不同护理场景。
2025-10-20 09:27:49
938
原创 著名物理学家杨振宁先生逝世 享年103岁
2025 年 10 月 18 日 12 时 00 分,享誉世界的物理学家、诺贝尔物理学奖获得者,中国科学院院士,清华大学教授、清华大学高等研究院名誉院长杨振宁先生,因病在北京逝世,享年 103 岁。清华大学于当日发布讣告,沉痛悼念这位对现代物理学与中国科教事业作出卓越贡献的世纪伟人。
2025-10-18 12:38:46
724
原创 第三章深度学习---核心库TensorFlow 和 PyTorch 实操指南(二)
本教程介绍了PyTorch在护理领域的应用,重点包括:1)PyTorch核心概念如张量操作和自动微分机制;2)护理数据集的加载与预处理方法;3)构建糖尿病护理风险预测模型。教程通过具体案例演示了如何创建神经网络模型、配置数据加载器以及实现模型训练循环,特别强调护理场景的实际应用价值。内容涵盖从基础操作到完整模型实现的全流程,帮助读者掌握PyTorch在医疗护理领域的应用技能。
2025-10-18 09:22:56
594
原创 第三章深度学习---核心库TensorFlow 和 PyTorch 实操指南(一)
本教程旨在掌握TensorFlow和PyTorch两大深度学习框架在 PyCharm 环境下的安装配置与实际应用。通过系统学习,将能够:掌握 TensorFlow 和 PyTorch 在 PyCharm 中的安装配置,解决 CUDA 兼容性等常见问题理解深度学习核心概念,包括张量操作、神经网络构建等掌握护理数据的预处理技术,能够处理缺失值、归一化等问题具备用库函数实现简单神经网络的能力,能够构建护理场景的预测模型掌握模型训练流程,包括优化器选择、损失函数设计、训练轮次设置等。
2025-10-18 09:22:28
1058
原创 第二章 深度学习入门:护理场景下的数据集与核心概念(一)
本文系统介绍了深度学习在护理领域的应用基础,重点阐述了护理数据集构建与神经网络核心概念。护理数据集包含训练集、验证集和测试集,采用7:3划分比例,具有丰富特征类型(人口统计学、临床特征等)。神经网络通过输入层、隐藏层和输出层处理数据,其中隐藏层学习特征间复杂关系,输出层预测感染风险。文章以体温-感染风险模型为例,展示了神经网络在护理场景中的实际应用价值。
2025-10-17 07:30:00
842
原创 第二章 深度学习入门:护理场景下的数据集与核心概念(二)
深度学习在护理领域的三大网络架构应用 摘要:深度学习技术已广泛应用于护理领域,主要包括三种网络架构:1)卷积神经网络(CNN)擅长处理护理影像数据,如压疮创面识别,通过自动特征提取实现伤口组织分类;2)循环神经网络(RNN)专长处理时序护理数据,如心率监测和生命体征预测,利用LSTM网络实现心律失常检测;3)全连接网络适用于结构化电子病历分析,可预测术后并发症风险等。文中提供了PyCharm实现代码示例,包括压疮分类CNN模型、心率异常检测RNN模型和并发症预测全连接网络模型,展示了不同网络架构在护理场景中
2025-10-17 07:00:00
803
原创 深度学习基础概念与护理应用场景理论知识框架(一)
深度学习基础概念与护理应用场景知识框架 深度学习是机器学习的重要分支,通过多层神经网络自动学习数据特征,具备强大的非线性表征能力。本框架系统梳理了深度学习的核心概念体系,包括:1)数据类型(标量、向量、矩阵、张量);2)神经网络结构(输入层、隐藏层、输出层);3)激活函数(Sigmoid、Tanh、ReLU等);4)损失函数(MSE、MAE、交叉熵等);5)优化算法(SGD、Adam等)。特别探讨了深度学习在护理领域的应用场景,分析如何利用该技术赋能现代护理实践,同时关注护理场景下的特殊要求和伦理考量。
2025-10-16 07:00:00
627
原创 深度学习基础概念与护理应用场景理论知识框架(二)
本知识框架系统梳理了深度学习的核心基础概念及其在护理领域的应用场景,旨在为护理专业人员和研究者提供全面的理论参考, 帮助理解深度学习技术如何赋能现代护理实践,同时探讨技术应用中的伦理考量和特殊要求。方面,深度学习模型在特定数据集上的表现可能非常出色,但在实际应用中,模型的泛化能力往往受到限制,医疗领域的数据多样性和动态变化,要求模型具备较强的泛化能力,以适应不同的临床场景。限制方面,深度学习模型通常需要大量的计算资源和时间进行训练,在医疗领域,尤其是在偏远地区,计算资源的缺乏可能会限制深度学习技术的应用。
2025-10-16 07:00:00
1768
原创 第六章机器学习--无监督学习:从K-Means到患者亚组分析的护理数据挖掘的项目实战(一)
摘要 本文介绍了基于PyCharm的糖尿病患者聚类分析项目实战。项目采用规范化的机器学习项目结构,包含数据目录、模型文件、源代码和配置文件等模块。主程序通过五个步骤实现:数据导入、预处理、聚类分析、结果分析和可视化。数据处理模块对数值型、文本型和分类数据进行标准化和向量化处理。聚类算法模块采用KMeans实现多模态聚类分析。项目结构清晰,代码模块化,便于扩展和维护,为糖尿病患者的无监督学习分析提供了完整解决方案。
2025-10-15 07:30:00
656
原创 第六章机器学习--无监督学习:从K-Means到患者亚组分析的护理数据挖掘的项目实战(二)
本文介绍了糖尿病患者的无监督学习聚类分析项目,主要内容包括:1)项目运行步骤(创建虚拟环境、安装依赖包、执行主程序);2)调试技巧(断点调试、性能优化、参数调优);3)聚类效果评估方法(内部指标评估、肘部法则验证、稳定性检验);4)临床应用部分展示了如何根据聚类结果生成个性化护理策略,包括不同风险等级患者对应的护理目标、干预措施和监测频率。项目通过机器学习技术实现了糖尿病患者的分群管理,为个性化护理提供了数据支持。
2025-10-15 07:30:00
1814
原创 第五章机器学习--无监督学习:从K-Means到患者亚组分析的护理数据挖掘实践(一)
聚类分析(Clustering Analysis)是一种无监督机器学习技术,其核心目标是将数据集中的对象划分为具有相似特征的不同组(称为簇)。同类样本之间的相似性最大化,而不同类样本之间的相似性最小化。无监督学习:不需要预先给定的标签或类别信息探索性分析:用于发现数据中的潜在模式和结构多领域应用:广泛应用于客户细分、图像压缩、市场分析、医疗诊断等领域患者亚组分析:识别具有相似临床特征的患者群体,为个体化护理提供依据护理需求预测:根据患者特征预测护理资源需求疾病亚型分类。
2025-10-14 07:30:00
1630
原创 第五章机器学习--无监督学习:从K-Means到患者亚组分析的护理数据挖掘实践(二)
摘要:本文介绍了糖尿病多模态患者数据集构建与预处理方法。通过模拟生成300例患者数据,包含数值型临床指标、文本型症状描述和分类护理评估数据。数值型数据采用标准化处理,文本数据使用TF-IDF向量化,分类数据采用独热编码。最后提出特征级和决策级两种多模态数据融合策略,包括对数值型和文本型数据分别进行聚类分析。该研究为糖尿病患者的亚组分析和个性化护理提供了数据基础。
2025-10-14 07:30:00
575
原创 第四章机器学习----决策树与随机森林(一)
决策树与随机森林是重要的监督学习算法,广泛应用于分类和回归任务。决策树通过递归选择最优特征构建树形模型,其优势在于直观易懂、能处理混合特征并识别特征交互作用。随机森林基于Bagging策略,通过多棵决策树的集成提高模型性能,具有鲁棒性强、可解释性好等优势。文章详细对比了ID3、C4.5和CART等决策树算法的特点,分析了不同分裂准则及过拟合问题,并探讨了随机森林的特征重要性分析和参数调优方法。这些算法在医疗数据分析中展现出独特价值,如抑郁症复发风险评估等场景。
2025-10-13 07:30:00
1015
原创 第四章机器学习----决策树与随机森林(二)
本文介绍了使用PyCharm实现抑郁症复发风险预测项目的完整流程。项目采用标准化的机器学习项目结构,包含数据处理、模型训练与评估模块。通过决策树、随机森林和逻辑回归三种监督学习算法构建预测模型,实现了从数据预处理(标准化、独热编码)、模型训练到性能评估(准确率、分类报告、AUC值)的全流程。文章详细展示了Python代码实现,包括特征工程、模型管道构建和可视化分析,为临床抑郁症复发预测提供了可复现的机器学习解决方案。项目特别关注了数据不平衡问题的处理,并采用分层抽样确保模型评估的可靠性。
2025-10-13 07:30:00
675
原创 第三章机器学习算法与实践中的监督学习算法——逻辑回归(一)
摘要:逻辑回归是一种重要的监督学习分类算法,文章系统介绍了其理论基础和实践应用。在理论部分,详细讲解了二分类和多分类逻辑回归的数学模型、Sigmoid/Softmax函数、损失函数及参数优化方法。实践部分通过抑郁症诊断案例,演示了数据预处理、特征选择、模型训练与评估的完整流程,包括准确率、召回率、F1分数等指标计算和ROC曲线绘制。文章特别强调了逻辑回归在医疗护理领域的应用价值,如抑郁症诊断和癌症患者死亡风险预测等场景。
2025-10-12 07:30:00
1953
原创 第三章机器学习算法与实践中的监督学习算法——逻辑回归(二)
摘要:本文介绍了多分类逻辑回归在抑郁症严重程度分类中的应用实践。通过模拟HAMD评分数据构建三类抑郁等级分类模型,详细展示了数据准备、模型构建(使用Softmax函数)、评估(准确率、分类报告)及决策边界可视化的完整流程。同时深入讲解了分类模型的核心评估指标:准确率、精确率、召回率和F1分数,特别强调了它们在医疗场景中的实际意义——精确率关注误诊风险,召回率关注漏诊风险。案例采用Python实现,包含数据标准化、多分类逻辑回归训练和三维度评估(无抑郁/轻度/中重度),为医疗AI应用提供了可复现的技术方案。(
2025-10-12 06:30:00
1009
原创 第三章_机器学习算法与实践——监督学习算法中的线性回归(一)
摘要 本章系统讲解了监督学习中的线性回归算法,包括单变量和多元线性回归的理论与实践。重点内容涵盖:1) 线性回归数学原理(损失函数、梯度下降、正规方程);2) 使用PyCharm进行护理数据处理和特征工程;3) 构建与评估回归模型。通过两个护理领域案例(患者预后预测和护理工作量预测)演示了完整开发流程,包括数据预处理、特征选择、模型训练与评估(R²、MAE、MSE、RMSE等指标)。难点在于梯度下降算法优化、多元回归特征处理及护理专业解读,案例结合Python代码实现,为护理领域数据分析提供实用方法。
2025-10-11 08:00:00
364
原创 第三章_机器学习算法与实践——监督学习算法中的线性回归(二)
本文介绍了护理工作量预测的机器学习模型构建过程。通过1121例呼吸内科患者数据,使用线性回归模型预测护理工时需求。数据预处理包括分类变量编码和特征标准化,模型评估指标显示R²为0.68,平均预测误差率15.2%,RMSE为1.8小时。特征重要性分析表明DRG权重、年龄和合并症评分是主要影响因素。文章还详细解析了R²、MAE、MSE、RMSE和调整R²等评估指标的计算方法及在护理场景中的实际应用价值,为护理人力资源调配和排班计划提供了数据支持。
2025-10-11 08:00:00
753
原创 第二章 机器学习基础理论 - 数学基础(四)
本文介绍了机器学习中的假设检验基础理论及其在护理领域的应用案例。主要内容包括:假设检验的基本原理(原假设与备择假设、检验统计量计算、p值确定);常用检验方法(单样本t检验、两样本t检验、卡方检验)及其在抑郁症治疗研究中的应用;通过Python代码演示了5个典型案例的实现过程,涵盖单样本检验、两样本比较、配对检验、卡方分析和方差分析,并包含效应量计算和事后检验等高级分析技术。文章为机器学习在医疗数据分析中的应用提供了统计方法支撑和实践指导。
2025-10-10 06:30:00
355
原创 第二章 机器学习基础理论 - 数学基础(三)
本文介绍了机器学习中的数理统计基础,重点讲解了参数估计方法及其在护理研究中的应用。文章涵盖点估计与区间估计的理论推导和实际案例,如青少年抑郁症患病率估计。详细阐述了最大似然估计的原理和实现,包括正态分布参数的估计过程,并提供了Python代码示例。此外,还介绍了贝叶斯参数估计方法,通过先验分布与观测数据计算后验分布。文中的PyCharm操作演示了如何用Python实现这些统计方法,包括置信区间计算、最大似然估计优化等关键技术。
2025-10-10 06:30:00
632
原创 第二章 机器学习基础理论 - 数学基础(二)
概率分布描述了随机变量取不同值的概率规律,在护理研究中用于建模患者特征和治疗效果。理论推导离散型随机变量:概率质量函数(PMF)PXxP(X = x)PXx连续型随机变量:概率密度函数(PDF)fxf(x)fx,满足∫−∞∞fxdx1∫−∞∞fxdx1护理案例在青少年抑郁症研究中,我们可能遇到以下分布:二项分布:某班级中患抑郁症的人数正态分布:HAMD 评分的总体分布泊松分布:特定时间内自杀念头出现的次数。
2025-10-09 10:57:40
470
【LaTeX排版】自定义宏命令集:数学符号与格式简化在学术论文写作中的应用
2025-08-09
【LaTeX排版】学术论文排版技巧:定制化环境与命令定义用于数学文档结构优化了文档的主要内容
2025-08-09
数学领域基于LaTeX的拓扑与线性空间理论讲义:序列极限、范数及算法示例涵盖了数学领域的几个
2025-08-09
【嵌入式开发工具】基于ARM的Keil MDK集成开发环境:微控制器软件开发套件详细介绍
2025-08-07
### AI浪潮下,FPGA如何实现自我重塑与行业变革
2025-08-06
### 【军事科技领域】FPGA在美国军工开发平台中的应用与优势分析:核心技术特性及未来发展趋势、FPGA概述
2025-08-06
【LaTeX技术】LaTeX引用参考文献全流程指南:从.bib文件准备到文献样式定制
2025-08-05
【LaTeX排版技术】常见问题解析与高效应用技巧:从环境配置到复杂公式排版的全面指南
2025-08-04
【虚拟化技术】VMware Workstation Pro安装教程:详细步骤与配置选项说明及用途
2025-07-29
LaTeX教程:手把手教你编写late博客的工程源码
2025-08-24
vivado的TCL自动化流程实现FPGA从工程创建到硬件实现全流程分析
2025-08-23
护理科研人员的LaTeX进阶指南:从基础排版到SCI级图表制作
2025-08-10
数学排版LaTeX数学字体命令汇总:各类字母样式定义及应用
2025-08-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅