背包详解

目录

 

我的理解

01背包

完全背包

多重背包


前言:之前看背包的时候,还是大一暑假集训那会,那会看背包,就跟看天书一样,现在看来,其实现在看起来简单了许多,也比较容易理解,可能这就是思维上的改变和进步吧

我的理解

关于dp
我对01背包的理解,比如现在有个5个物品,每个物品的体积以及价值都不一样,首先从第一个物品开始判断是否能装下,若装下,若不能装下,此时价值为x,选下一个物品,这个物品,判断该物品是否能装下,一种情况:书包的总体积大于该物品,书包里面已经有了物品,但是剩余的空间不能装下该物品,所以就要从书包里面拿出物品,留出足够的空间给该物品。此时记下这时书包的价值y,与没有加这个物品最初的价值x进行对比,取二者相对最大的
 
 
对于01背包和完全背包
一个是递减(从最大的值递减,因为它更新的是后面的值,前面的值没有更新,dp对比的是前面的值,就说明只是加了一个值,)
一个是递增(从最小的值递增,就说明不断的更新前面的值,dp对比的是前面的值,再次基础上可以实现多次重复的的增加)

01背包

 

hdu2602

Bone Collector

 

#include<bits/stdc++.h>
typedef long long ll;
#define N 1010
using namespace std;
int w[N],val[N],dp[N];
int main()
{
   int t;
   cin>>t;
   while(t--){
    int n,v;
    cin>>n>>v;
    memset(w,0,sizeof(w));
    memset(val,0,sizeof(val));
    memset(dp,0,sizeof(dp));
    for(int i=0;i<n;i++){
        cin>>w[i];
    }
    for(int i=0;i<n;i++){
        cin>>val[i];
    }
    for(int i=0;i<n;i++){
        for(int j=v;j>=val[i];j--){
            dp[j] = max(dp[j],dp[j-val[i]]+w[i]);
        }
    }
    cout<<dp[v]<<endl;
   }
}

完全背包

问题描述:有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。第 i 种物品的体积是 w[i],价值是 c[i]。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

可以和01背包对比一下其实就是第二个for变成了递增,

从最小的值递增,就说明不断的更新前面的值,dp对比的是前面的值,再次基础上可以实现多次重复的的增加

#include<iostream>
#include<algorithm>
using namespace std;
int n,m,w[10005],c[10005],dp[10005];
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>w[i]>>c[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=w[i];j<=m;j++){//j<w[i]没有选择的机会
            dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
        }
    }
    cout<<dp[m];
    return 0;
}

多重背包

问题描述:有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 s[i] 件,每件体积是 w[i],价值是 c[i]。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。

要进行一个拆包的处理

此问题转化为一个01背包问题,将当前物品的s[i]件都装入背包,然和当成01背包问题处理即可

#include<iostream>
#include<algorithm>
using namespace std;
const int M=500005;
int N,V,v[M],w[M],s[M],dp[M];
int main(){
    cin>>N>>V;
    for(int i=1;i<=N;i++){
        cin>>v[i]>>w[i]>>s[i];
    }
    //装包(转化为01背包问题)
    int k=N+1;
    for(int i=1;i<=N;i++){
        while(s[i]>1){//说明有多个物品
             v[k]=v[i];
             w[k]=w[i];
             k++;
             s[i]--;
        }
    }
    for(int i=1;i<=k;i++){
        for(int j=V;j>=v[i];j--){
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    }
    cout<<dp[V]<<endl;
    return 0;

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值