盒子与球砰砰砰

盒子与球

刚刚做了sdnu里的一道题关于盒子与球的,果然想得好复杂,然而一搜hhh,递推,想不到,哭········然后顺便学习一下盒子与球问题吧,但是其他的没有实践操作,谁知道会怎样呢hhhhh

1.n个不同小球放m个不同的盒子里,无空盒(递推)

(先忽略盒子的不同)用f[n][m]表示n个小球放在m个盒子里的方案数,那么第n个放在第m个盒里分两种情况
1.第m空 则放在这里
2.第m不空 那么就随意放了
进行递推
公式如下

f[n][m]=f[n-1][m-1]+f[n-1][m]*m
然后最后记得加上盒子的不同即 乘A(m,m)

2.n个不同小球放在m个不同的盒子里,可有空盒

在这里插入图片描述
应该记住这个结论就行吧嘤嘤嘤

3.n个不同的球放在m个相同的盒子,无空盒

参考上面第一个情况即忽略盒子的不同,即不乘A(m,m)

4.n个不同的球放在m个相同的盒子,可有空盒

分情况讨论
n个不同的球全放在1个盒子中
+
n个不同的球放在2个盒子中
+
······
+
n个不同的球放在m个盒子中
这几个分别用第一个的那个递推来做在求和就ok

5.n个相同的球放在m个不同的盒子,无空盒

emmm因为球相同,对球进行插板,即插入m-1个板分成m堆,

即C(n-1,m-1)

6.n个相同的球放在m个不同的盒子中,可有空盒

还是隔板法,先给每个盒子一个球,那么就可以转变为n+m个球放入m盒中无空盒
即 C(n+m+1,m-1)

7.n个相同的球放在m个相同的盒子中,无空盒

f[n][m] 表示为n个小球放在m个盒子中的方案数
因为无空盒那么等于每个盒先放一个然后对剩下的进行放
进行递推
f[n][m]=f[n-m][m]+f[n-1][m-1];

8.n个相同的球放在m个相同的盒子中,可有空盒

和6一样
先转换
先各放一个小球然后转换为无空盒的
递推式如下
f[n+m][m]= f[n][m]+ f[n+m-1][m-1];

终于写完了,哭哇哇哇,如果有不对的地方希望师哥们教教我吧
在这里插入图片描述

发布了25 篇原创文章 · 获赞 3 · 访问量 2061
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览