数组与字符串——最长回文子串

话不多说,先上题!
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例
解题思路
采用动态规划算法。

  • 状态表示:使用p[i][j]表示字符串中下标i到j的子字符串是否为回文串,若为回文串则p[i][j]=1否则p[i][j]=0。
  • 状态转移:通过观察长度大于2回文串可知,当左右边界各去除相同个字符后得到的子串仍为回文串;而当回文串的长度等于2时两字符相同;长度为1的字符串均为回文串。故可得到状态转移方程为:
    //当长度>2时,p[i][j] = p[i+1][j-1]&&s[i]==s[j];
    //当长度=2时,p[i][j] = (s[i]==s[j]);
    //当长度=1时,p[i][j] = 1;
  • 确定边界:首先确定一个行数和列数均为字符串长度的矩阵。规定初始状态为矩阵各元素均初始化为0,最小子问题为矩阵中各元素表示的子字符串是否为回文串,结束条件为所有元素确定状态完毕。

代码

class Solution {
public:
    string longestPalindrome(string s) {
        //动态规划算法
        //当长度>2时,p[i,j] = p[i+1,j-1]&s[i]==s[j];
        //当长度=2时,p[i,j] = (s[i]==s[j]);
        //当长度=1时,p[i,j] = 1;
        int n = s.length();
        if(n < 2) {
            return s;
        }
        string ans;
        vector<vector<int>> v(n, vector<int>(n));
        for(int l = 0; l < n; ++l) {
            for(int i = 0; i+l < n; ++i) {
                int j = i + l;
                if(l == 0) {
                    v[i][j] = 1;
                } else if(l == 1) {
                    v[i][j] = (s[i]==s[j]);
                } else {
                    v[i][j] = (v[i+1][j-1] && s[i]==s[j]);
                }
                if(v[i][j] && l >= ans.size()) {
                    ans = s.substr(i, l+1);
                }
            }
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值