判断题
1-1
某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子T
后序遍历:左右根
中序遍历:左根右
如果遍历序列想要一样,一定没有右孩子
1-2
某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无左孩子。 F
同1-1
1-3
存在一棵总共有2016个结点的二叉树,其中有16个结点只有一个孩子。F
1-4
若A和B都是一棵二叉树的叶子结点,则存在这样的二叉树,其前序遍历序列为…A…B…,而中序遍历序列为…B…A…。 F
前序遍历:根左右
中序遍历:左根右
A和B都是叶子结点,不影响二者的访问次序
1-5
若一个结点是某二叉树的中序遍历序列的最后一个结点,则它必是该树的前序遍历序列中的最后一个结点。F
前序遍历:根左右
中序遍历:左根右
特例:只有根和左子树的图不成立
1-6
某二叉树的前序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无左孩子。T
前序遍历:根左右
中序遍历:左根右
如果要一样,肯定没有左孩子
1-7
已知一棵二叉树的先序遍历结果是ABC, 则CAB不可能是中序遍历结果。T
A为根,B为左,C为右。
中序遍历结果应为BAC
选择题
2-1
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T的高度为h(单结点的树h=1),则T的结点数最多为:A
A.(kh−1)/(k−1)
B.(kh−1−1)/(k−1)
C.(kh+1-1)/(k−1)
D.以上都不是
求结点数总数,
等比数列求和公式Sn=a1(1-qn)/(1-q)
每一层的结点数1,k,k2,k3,…kh-1
求和(1-kh)/(1-k),选A
2-2
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T的高度为h(单结点的树h=1),则T的结点数最少为:D
A.(kh−1−1)/(k−1)+1
B.(kh−1)/(k−1)−1
C.kh
D.k(h−1)+1
最少就是每层只有一个结点有孩子,往下分,除去根节点一共有(h-1)层,故最少应该是k(h-1)+1,选D
2-3
要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点须满足的条件是:B
A.只有左子树
B.只有右子树
C.结点的度均为1
D.结点的度均为2
先序遍历:根左右
中序遍历:左根右
最后都是右,故必须满足只有右子树
2-4
已知一棵二叉树的树形如下图所示,其后序序列为{ e, a, c, b, d, g, f }。树中与结点a同层的结点是:B
A.c
B.d
C.f
D.g
后序遍历:左右根
则f为根,eac,bdg
f
cg
ad
eb
故d和a一层
2-5
在下述结论中,正确的是: A
① 只有2个结点的树的度为1
② 二叉树的度为2;
③ 二叉树的左右子树可任意交换;
④ 在最大堆(大顶堆)中,从根到任意其它结点的路径上的键值一定是按非递增有序排列的。
A.①④
B.②④
C.①②③
D.②③④
二叉树的度不一定为几,一个结点的二叉树度为0,两个结点的二叉树度为1,三个结点的二叉树可以为1或者2,①对② 错,
二叉树是有序树,左右子树不能随意交换
2-6
若一棵二叉树的后序遍历序列是{ 1, 3, 2, 6, 5, 7, 4 },中序遍历序列是{ 1, 2, 3, 4, 5, 6, 7 },则下列哪句是错的?A
A.这是一棵完全二叉树
B.2是1和3的父结点
C.这是一棵二叉搜索树
D.7是5的父结点
后序:左右根,中序:左根右
画图可知,2为1和3的父结点
且符合二叉搜索树定义
7是5的父结点
且不是一棵完全二叉树
2-7
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T有m个非叶子结点,则T中的叶子结点个数为:C
A.mk
B.m(k−1)
C.m(k−1)+1
D.m(k−1)−1
最开始只有一个叶子结点(即根结点)每去掉一个叶子结点,即将该几点分k叉,那么增加k-1个叶子结点。
也可以画个二叉正则树和三叉正则树试试
2-8
有一个四叉树,度2的结点数为2,度3的结点数为3,度4的结点数为4。问该树的叶结点个数是多少?D
A.10
B.12
C.20
D.21
设度1的结点个数为x,度为0的结点数为y,总度数即为x+2×2+3×3+4×4=29+x
所以总结点数为30+x
由已知30+x=x+y+2+3+4
y=21
2-9
若一棵二叉树的前序遍历序列是{ 4, 2, 1, 3, 6, 5, 7 },中序遍历序列是{ 1, 2, 3, 4, 5, 6, 7 },则下列哪句是错的?D
A.这是一棵完全二叉树
B.所有的奇数都在叶子结点上
C.这是一棵二叉搜索树
D.2是5的父结点
画出图可知,这是一个完全二叉树。所有奇数都在叶子结点上。
二叉搜索树它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉搜索树。
2-10
按照二叉树的定义,具有3个结点的二叉树有几种? C
A.3
B.4
C.5
D.6
有两层的也有三层的
两层的是:根-(一左一右)
三层的是:根-左-左;根-右-右;根-左-右;根-右-左
一共五种
2-11
任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序 B
A.发生改变
B.不发生改变
C.不能确定
D.以上都不对
因为根据三个遍历的次序和特点:前序是根左右、中序是左根右、后序是左右根,因此相对次序发生变化的都是子树的根,也就是分支结点。
2-12
二叉树中第5层(根的层号为1)上的结点个数最多为:C
A.8
B.15
C.16
D.32
第五层结点个数最多为25-1个结点,即24个。
固定式子第k层有2k-1个结点
2-13
先序遍历图示二叉树的结果为 B
A.A,B,C,D,H,E,I,F,G
B.A,B,D,H,I,E,C,F,G
C.H,D,I,B,E,A,F,C,G
D.H,I,D,B,E,F,G,A,C
先序遍历就是先左子树,从左边往下跑,就是ABDHIECFG
2-14
三叉树中,度为1的结点有5个,度为2的结点3个,度为3的结点2个,问该树含有几个叶结点? A
A.8
B.10
C.12
D.13
三叉树的结点都不大于3
结点总数应该等于i度结点数的和:N=n0+n1+n2+n3
i度结点有i个孩子,根结点不是任何结点的孩子,结点总数N=n1+2n2+3n3+1
由上述两式得知n0=n2+2n3+1=3+2×2+1=8
2-15
某二叉树的中序序列和后序序列正好相反,则该二叉树一定是 C
A.空或只有一个结点
B.高度等于其结点数
C.任一结点无左孩子
D.任一结点无右孩子
中序序列:左根右
后序序列:左右根
如果二者正好相反,则该二叉树无左子树,因为根右和右根正好相反。
2-16
某二叉树的前序和后序遍历序列正好相反,则该二叉树一定是 B
A.空或只有一个结点
B.高度等于其结点数
C.任一结点无左孩子
D.任一结点无右孩子
前序序列:根左右
后序序列:左右根
如果前序序列和后序序列正好相反 ,则该二叉树一定满足该二叉树只有左子树或只有右子树,即该二叉树一定是一条链(二叉树的高度为N,高度等于结点数)
前序序列和后序序列正好相反,高度等于其结点数;
前序序列和中序序列正好相反,任一结点无右孩子;
中序序列和后序序列正好相反,任一结点无左孩子。
2-17
设n、m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 A
A.n在m左方
B.n在m右方
C.n是m祖先
D.n是m子孙
中序遍历为左根右,所以n一定要在m左边
2-18
给定二叉树如下图所示。设N代表二叉树的根,L代表根结点的左子树,R代表根结点的右子树。若遍历后的结点序列为3、1、7、5、6、2、4,则其遍历方式是:B
A.NRL
B.RNL
C.LRN
D.RLN
由题可知,遍历方式为右中左,即为RNL
2-19
设高为h的二叉树(规定叶子结点的高度为1)只有度为0和2的结点,则此类二叉树的最少结点数和最多结点数分别为: B
A.2h, 2h−1
B.2h−1, 2h-1
C.2h−1, 2(h−1)−1
D.2h-1+1,2h-1
结点最少,除了根结点之外,其他h-1层每层都有两个结点,因此总结点数为2×(h-1)+1=2*h+1
2-20
在下述结论中,正确的是: A
①只有一个结点的二叉树的度为0;
②二叉树的度为2;
③二叉树的左右子树可任意交换;
④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.①④
B.②④
C.①②③
D.②③④
同2-5,二叉树的度不一定为几,一个结点的二叉树度为0,两个结点的二叉树度为1,三个结点的二叉树可以为1或者2,①对②错。
树的度:树中所有结点的度的最大值。
满二叉树:所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上。
完全二叉树:逻辑结构与满二叉树的前n个结点的逻辑结构相同。