很多检测、分割的论文都用了mmseg,因此需要搭建mmcv环境
首先去mmcv官网:mmcv官网
查看对应的cuda版本,mmcv版本 ,torch版本,比如现在我们要下载mmcv1.4.4
那么就在框中分别选择,找到mmcv1.4.4对应的cuda版本和torch版本
对应的创建环境等指令则为:
1. nvidia-smi 查看cuda版本(cuda可以向下兼容,比如,自己的电脑cuda版本是12.1,那么下载cuda11.3对应的torch和mmcv版本也是没问题的)
2. conda create -n mmseg1.4.4
3. conda activate mmseg1.4.4
4. conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
5. pip install mmcv-full==1.4.4 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10/index.html -i https://pypi.tuna.tsinghua.edu.cn/simple
(此处用了镜像,然后还要注意这里是mmcv-full而不是mmcv,如果打成mmcv则会导致运行代码时可能缺少一些关键库)