枚举子集合

增量构造法

构建集合,一次选出一个元素放入集合(可重集同样适用)

#include<bits/stdc++.h>
using namespace std;
int n;
int a[100],b[100];
void subset(int cnt,int k){
	for(int i=1;i<cnt;i++)
      cout<<b[i]<<" ";//无论数组中有几个元素都要打印出来 
    cout<<endl;
    for(int i=k;i<=n;i++){
    	if(i==1||a[i]!=a[i-1]){
    		b[cnt]=a[i];//每次从数组中选出一个元素 
    	    subset(cnt+1,i+1);
			//为了防止集合重复,定序,i每次递归都要往前一步
		}
	}
}
int main(){
	cin>>n;
	for(int i=1;i<=n;i++)
	 cin>>a[i];
	sort(a+1,a+1+n);//一定要排序 
	subset(1,1);
}

位向量法(不适合可重集,效率较低)

用一个bool数组判断此数是否选过

#include<bits/stdc++.h>
using namespace std;
int a[100];
bool b[100];
void subset(int cnt,int n){
    if(cnt==n+1){
    	for(int i=1;i<=n;i++){
    		if(b[a[i]])
    		 cout<<a[i]<<" ";
		}
		cout<<endl;
		return ;
	}
		b[a[cnt]]=1;//选此数 
        subset(cnt+1,n);
        b[a[cnt]]=0;
        subset(cnt+1,n);//不选此数 
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	 cin>>a[i];
	sort(a+1,a+1+n);
	subset(1,n);
}

二进制法(只用于1~n,最快)

n个数有2^n个子集,去掉空集,每个子集正好对应一个二进制

用二进制的0,1 表示对应的值是否存在

n个数都存在,为11111111(假设n为8),化成十进制则为2^n -1

这里我们把每一个二进制编码看做是子集,而不再看做二进制

原理是这样的,假设现在有 一个二进制1011,代表此子集中有0,1,3  ,现在只需取出这几个数

用1011 '&' 后面的二进制(2^i)

0001

0010

0100

1000

&作用后结果为   

0001                    

0010

0000

1000

只要两个集合&后结果不为0,则 i 存在子集中,输出即可

#include<bits/stdc++.h>
using namespace std;
int n;
void subset(int k){
	for(int i=0;i<n;i++){//将子集中的数取出来 
		if(k&(1<<i))
		 cout<<i+1<<" ";
	}
	cout<<endl;
}
int main(){
   cin>>n; 
   for(int i=0;i<(1<<n);i++){//枚举所有的子集 
   	  subset(i);
   }
   return 0; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值