数论 、 数学知识 (1)

2021/4/9
2021/4/10
acwing学习笔记、分享一下

一、质数

在大于1的整数中, 如何只包含1和本身这2个约数,就被称为 质数 ,也叫素数

(1) 质数的判定——试除法

AcWing 866. 试除法判定质数

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

bool is_prime(int n){
    if(n<2)  return false;
    for(int i=2;i<=n/i;i++){
        if(n%i==0) return false;
    }
    return true;
}

int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        int a;
        cin>>a;
        if(is_prime(a)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
}
(2) 分解质因数——试除法

AcWing 867. 分解质因数

#include<bits/stdc++.h>
using namespace std;

void divide(int n){
    for(int i=2;i<=n/i;i++){  // n/i
        if(n%i==0){       //n不包含任何从2到i-1之间的质因子(已经被除干净了)
                          //(n%i==0)所以i也不包含何从2到i-1之间的质因子,由质数的定义可知,保证了i是质数
            int s=0;
            while(n%i==0) n/=i,s++;  
            cout<<i<<' '<<s<<endl;
        }
    }  
    if(n>1) cout<<n<<' '<<1<<endl;    //最多只有一个大于根下n的质因子(两个相乘就大于n了)
    cout<<endl;
}

int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        int a;
        cin>>a;
        divide(a);
    }
}

(3) 筛质数

筛质数

朴素筛法求素数

O(nlognlogn)埃式筛法

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 1e6+5;

int primes[N],cnt;

bool st[N];

void get_primes(int n)  // 埃式筛法
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]){
            
            primes[cnt ++ ] = i;
            for (int j = i+i; j <=n; j +=i ) st[j]=true;
            
        }
    
    }
}


int main()
{
    int n;
    cin >> n;
    
    get_primes(n);
    
    cout<<cnt<<endl;
    
    
    return 0;
}
线性筛质数

保证每个数被自己最小质因子筛选掉
ps:
9 i= 3 pj=3 筛掉

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 1e6+5;

int primes[N],cnt;  // primes[]存储所有素数

bool st[N];    //  st[x]存储x是否被筛掉

void get_primes(int n)  // 线性筛质数
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        
        
       //primes[j]<=n/i:变形一下得到——primes[j]*i<=n,把大于n的合数都筛了就没啥意义了
        
        for (int j = 0; primes[j] <= n / i; j ++ ) // 从小到大枚举每个质数
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break; //primes[j]一定是i的最小质因子
                                           // 
        }
    }
}


int main()
{
    int n;
    cin >> n;
    
    get_primes(n);
    
    cout<<cnt<<endl;
    
    return 0;
}

二、约数

试除法求约数

AcWing 869. 试除法求约数

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

vector<int> get_div(int n){
    
    vector<int> res;
    for(int i=1;i<=n/i;i++){
        
        if(n%i==0){
            
            res.push_back(i);
            if(i!= n/i) res.push_back(n/i);
            
        }
    
    }
    sort(res.begin(),res.end());
    
    return res;
}
 
int n;
int main()
{
    
    
    cin>>n;
    while(n--){
        int x;
        cin>>x;
        auto res = get_div(x);
        
        for(int i=0;i<res.size();i++)
        cout<<res[i]<<' ';
        cout<<endl;
        
        
        
    }
    
    return 0;
}

约数个数和约数之和

如果 N = p1^c1 * p2^c2 * … *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * … * (ck + 1)
约数之和: (p1^0 + p1^1 + … + p1^c1) * … * (pk^0 + pk^1 + … + pk^ck)

AcWing 870. 约数个数

image-20210410112002832

#include <iostream>
#include <cstring>
#include <algorithm>
#include <map>

using namespace std;
const int MOD = 1e9+7; 


int main()
{
    int n,x;
    map<int,int> m;
    cin>>n;
    
    while(n--){
        
        cin>>x;
        
        for(int i=2;i<=x/i;i++){
            
            while(x%i==0){
                
                m[i]++;
                x/=i;    //方便求得约数的数量   
            }
        }
        if(x>1) m[x]++;    //x的最大公约数可能大于sqrt(x);
        
    }
    long long res = 1;
  
    
    for(map<int,int >::iterator p =m.begin();p!=m.end();p++){   // iterator 迭代器 * 指针类型
        //  cout<<'p'<<(*p).first<<' '<<(*p).second<<endl;
         res=res*((*p).second+1)%MOD;                    //  公式
    }
    //  或者auto 
    //   map<int,int> m;
    //  for(auto p:m){
    //      cout<<'p'<<p.first<<' '<<p.second<<endl;
    //      res=res*(p.second+1)%MOD;
    //  } 
    
    cout<<res<<endl;
    
    return 0;
}

AcWing 871. 约数之和

约数之和: (p10+p11+…+p1c1)∗…∗(pk0+pk1+…+pkck)(p10+p11+…+p1c1)∗…∗(pk0+pk1+…+pkck)

while (b – ) t = (t * a + 1) % mod;

t=t∗p+1
t=1
t=p+1
t=p2+p+1
……
t=pb+pb−1+…+1


#include <iostream>
#include <cstring>
#include <algorithm>
#include <map>

using namespace std;
typedef long long ll;

const int MOD = 1e9+7;

int n,x;

int main()
{
    cin>>n;
    map<int,int> map;
    while (n -- ){
        cin>>x;
        
        for(int i=2;i<=x/i;i++)
        {
            while(x%i==0){
                
                map[i]++;
                x/=i;
            }
                
        }
        if(x>1) map[x]++;
    }
    
    ll res = 1;
    for(auto p:map){
        
        int a = p.first,b = p.second;
        ll t= 1;
        while(b--) t=(t*a+1)%MOD;
        res= res*t%MOD;
        // res=res*(p.second+1)%MOD;
        
        
    }
    cout<<res<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值