1
Discrete Logging
Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111
Sample Output
0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
本题是一个典型并且裸的BSGS
所谓BSGS
就是求B^l == N (mod P)
常用的一种方式 当 p较小是可以通过快速幂进行解决当是这种题目时即为 p有的值极大 无法用快速幂求解b^
b^l == n mod p;'
设l==i*m-j
其中m=ceil(sqrt(p)) ceil意思是向上取整 即 2.1=3 ;3.9=4 ;-1.5=-1; -1.2=-1;
所以b^(i+m-j)=n mod p;
所以b^(i+m)=(n * b^j) mod p
然后暴力枚举 右边存入哈希表中 其中使用一个 map 函数
相当于 扩展数组大小和一把钥匙 直接就可以判断当前数组中是否含有 当前数
然后枚举左边 同时进行哈希表的判断 如果有
那么 i+m-j 即是答案
下面 是BSGS 的模板
ll bsgs(ll a,ll b,ll p)
{
ll m=ceil(sqrt(p));
map<ll,int>flag;
ll temp;
for(ll j=0;j<=m;j++){
if(j==0) temp=b;
else temp*=a;
temp%=p;
flag[temp]=j;
}
ll z=1;
temp=qpow(a,m,p);
for(ll i=1;i<m;i++){
z*=temp;
z%=p;
if(flag[z])
return i*m-flag[z];
}
return -1;
}