KMP
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int N=1e5+10,M=1e6+10;
int nxt[N];
int main(){
char p[N],s[M];
int n,m;
cin>>n>>p+1>>m>>s+1;
for(int i=2,j=0;i<=n;i++){
while(j&&p[i]!=p[j+1]) j=nxt[j];
if(p[i]==p[j+1]) j++;
nxt[i]=j;
}
for(int i=1,j=0;i<=m;i++){
while(j&&s[i]!=p[j+1]) j=nxt[j];
if(s[i]==p[j+1]) j++;
if(j==n){
printf("%d ",i-n);
j=nxt[j];
}
}
return 0;
}
KMP求最小循环节
定理:假设S的长度为len,则S存在最小循环节,循环节的长度L为len-next[len],子串为S[0…len-next[len]-1]。
(1)如果len可以被len - next[len]整除,则表明字符串S可以完全由循环节循环组成,循环周期T=len/L。
(2)如果不能,说明还需要再添加几个字母才能补全。需要补的个数是循环个数L-len%L=L-(len-L)%L=L-next[len]%L,L=len-next[len]。
Hash前缀
str="ABCDEF"
h[0]=0
h[1]="A"的hash值
h[2]="AB"的hash值
h[3]="ABC"的hash值
h[4]="ABCD"的hash值
h[5]="ABCDE"的hash值
h[6]="ABCDEF"的hash值
注意:
1.不能将字母映射成0
2.不考虑冲突存在情况,经验值,当p取131 13331 Q取2^64一般不会冲突(冲突可以考虑双hash)
给定一个长度为 n 的字符串,再给定 m 个询问,每个询问包含四个整数 l1,r1,l2,r2,请你判断 [l1,r1] 和 [l2,r2] 这两个区间所包含的字符串子串是否完全相同。
字符串中只包含大小写英文字母和数字。
输入格式
第一行包含整数 n 和 m,表示字符串长度和询问次数。
第二行包含一个长度为 n 的字符串,字符串中只包含大小写英文字母和数字。
接下来 m 行,每行包含四个整数 l1,r1,l2,r2,表示一次询问所涉及的两个区间。
注意,字符串的位置从 1 开始编号。
输出格式
对于每个询问输出一个结果,如果两个字符串子串完全相同则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤n,m≤10^5
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2
输出样例:
Yes
No
Yes
模板代码:
//字符串前缀hash法
//p=131或13331
//mod=2^64
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef unsigned long long ull;
const int N=1e5+10;
ull p[N],t[N];//溢出自动取余
char s[N];
ull gt(int l,int r)
{
return p[r]-p[l-1]*t[r-l+1];
}
int main()
{
int n,m;
cin>>n>>m;
cin>>s+1;
t[0]=1;
for(int i=1;i<=n;i++)
{
p[i]=p[i-1]*131+s[i];
t[i]=t[i-1]*131;
}
while(m--)
{
int l1,r1,l2,r2;
scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
if(gt(l1,r1)==gt(l2,r2)) puts("Yes");
else puts("No");
}
return 0;
}