动态规划
用f(x)表示爬到x级台阶的方案数,考虑到最后一步可能跨越了一级台阶,也可能跨越了两级台阶,故
f(x)=f(x−1)+f(x−2)
边界条件:我们是从第0级开始爬,从第0级到第0级的方案为1种,即f(0)=1,第0级到第一级的方案为1种,即f(1)=1,这两个作为边界条件就可以继续向后推导出第 n 级的正确结果。我们不妨写几项来验证一下,根据转移方程得到f(2)=3,f(3)=4,
f(4)=5,……,我们把这些情况都枚举出来,发现计算的结果是正确的。
class Solution {
public:
int climbStairs(int n) {
int p = 0, q = 0, r = 1;
for (int i = 1; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
};