数据挖掘实验(三):Apriori算法 R语言

该博客介绍了如何使用R语言进行数据挖掘实验,重点在于应用Apriori算法。实验目的是通过逐层迭代方法找出频繁项集,所使用的软件是RStudio。文中包含了具体的源代码实现。

一、 实验目的:

使用逐层迭代方法基于候选产生找出频繁项集

二、 实验软件:

Rstudio

三、 源代码:

#1数据准备并统计数据频数
da1<-c("A","B","C","F","E")
da2<-c("B","C","E")
da3<-c("A","C","D")
listda<-list(da1,da2,da3)
data<-as.data.frame(table(unlist(listda)))


Apriori<-function(data,listda,min_sup){
   
   
#n项统计频数.....
  test<-function(re,lis){
   
   
    req<-c() #记录数据框中每行数据在整个列表中出现的频次
    for(i in 1:nrow(re)){
   
   
      count<-0 #记录数据框中每次每行数据出现的频次
      for(j in 1:length(lis)){
   
   
        if(all(as.vector(as.matrix(re[i,])) %in% lis[[j]])){
   
    #判断给出的数据是每个列表数据的子集
          count<-count+1
        }
      }
      req[i]<-count
    }
    return(req)
  }
  
#剪枝,即选取满足最小支持度数的项集
  reduce<-function(data,min_sup){
   
   
    test1<-subset(data,data[,ncol(data)]>min_sup)
  }
  
#一
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值