【Python应用实战】线性回归(附Python代码) 多元线性回归的前提条件: 因变量不能和扰动项有线性关系 自变量与因变量之间要有线性关系 自变量之间不能有太强的线性关系 扰动项或残差独立且应服从均值为0、方差一定的正态分布 / 01 / 残差分析残差分析是线性回归诊断的重要环节。残差应服从的前提条件有三个: 残差方差齐性 残差独立同分布 残差不能和自变量相关(不能检验) 通过查看残差图来查看残差情况。残差图可分为四类: 残差正常分布:
R语言实战应用精讲50篇(三十一)-R语言实现决策树(附R语言代码) 决策树回归首先采用rpart包的rpart函数训练决策树模型,需要指定公式、数据集,将模型设定为回归模型,也就是将method设定为anova,最后是控制参数,主要是一些控制决策树生长的预剪枝参数,包括设定树的深度、叶子节点样本量、复杂度参数等,具体可以查阅函数帮助文档。其次输出前述模型的结果,即初始树,同时输出复杂度相关表格和图形。依据这些表格和图形可以确定一个最佳的cp值,进而进行下一步后剪枝。经过后剪枝的决策树,也就是我们最后确定下来的决策树模型,用于后续的输出和预测。最后输出决策
【数学建模】MATLAB应用实战系列(136)-优化算法:0-1背包算法(附MATLAB代码) 前言优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值。现实问题中,很多都需要用到优化。可以说优化随处可见。在普通的函数寻找极值、空间配置、背包问题、旅行商问题中都需要用到优化算法。在机器学习中优化算法能够帮助我们在大量的迭代中快速训练模型。01实例分析此篇介绍0-1规划,以经典的背包问题为例。MATLAB智能优化算法:从写代码到算法思想【1】中的第一章就提到了用遗传算法求解背
R语言实战应用精讲50篇(三十)-R语言实现支持向量机(附R语言代码) 支持向量机回归以下是构建公式、构建svm回归模型、输出模型概况的代码。主要是采用as.formula将因变量、自变量拼接到一起构建为公式,然后采用e1071包的svm函数训练支持向量机模型,其中核函数采用高斯核。# 因变量自变量构建公式colnames(boston)form_reg <-as.formula(paste0("medv ~ ", paste(colnames(traindata)[1:13], collapse =" + ")))form_reg# ...