数据挖掘
Forrest Gump Ma
这个作者很懒,什么都没留下…
展开
-
代码练习—POI数据爬取
爬取网站https://www.poi86.com/爬取代码import requestsimport reimport timeimport pandas# 获取当前街道页面root_url = "https://www.poi86.com/poi/amap/street/7086/1.html"res = requests.get(root_url)html = res.text#存储当前街道的POIstreet_poi = []# 获取所有POI的URLlinks =原创 2021-01-20 20:21:01 · 1487 阅读 · 0 评论 -
代码练习—Arcpy掩膜裁剪
import osimport arcpyfrom arcpy.sa import *#掩膜的位置clip_raster = "C:/Users/HP/Desktop/Clip/Tibetan_grassland_final_mask.tif"#要裁剪的栅格的位置path = "C:/Users/HP/Desktop/Clip/"input_raster1 = os.listdir(path)input_rasters = []for input_raster in input_ras原创 2021-01-15 10:04:48 · 264 阅读 · 1 评论 -
代码训练—python实现hdf文件mrt批处理
>>> import os>>> import arcpy>>> root_dir = "C:\\Users\\HP\\Desktop\\data\\"... output_dir_tif = "C:\\Users\\HP\\Desktop\\tif\\"... output_dir_mosaic = "C:\\Users\\HP\\Desktop\\mosaic\\"... output_dir_repro = "C:\\Users\\HP\原创 2021-01-14 18:14:00 · 759 阅读 · 2 评论 -
时间序列数据挖掘:墨尔本十年气温变化(二)
时间数据的特征工程将单纯的日期纬度扩展成更多维度,构造更多输入给模型的特征,增强数据的可解释性,更接近人的业务逻辑。哪一年哪一个月星期几这个月的第几天月初还是月末一年当中的第几天一年当中的第几个月#重新调用pandas的read_csv函数读取数据集文件df2 = pd.read_csv('daily-minimum-temperature.csv')df2.head()df2['Date'] = pd.to_datetime(df2['Date'])#构造新的一列:年原创 2020-08-02 23:14:57 · 1533 阅读 · 0 评论 -
时间序列数据挖掘:墨尔本十年气温变化(一)
从股票价格波动,到司机气温变化,从大桥沉降预测,到城市用电预警,时间序列数据广泛存在于量化交易、回归预测等机器学习应用,是最常见的数据类型。接下来使用Python对一个经典的时间序列数据集:墨尔本十年气温变化数据集,进行以下工作:探索性数据挖掘和数据可视化:绘制折线图、热力图、箱型图、小提琴图、滞后图、自相关图,让枯燥的时间序列颜值爆表!对时间做特征工程:拓展时间数据纬度,这个代码模板也可以作为时间序列数据的通用预处理模板。使用三种机器学习模型建立回归拟合模型:岭回归、随机森林、神经网络,并可视化转载 2020-08-01 16:26:21 · 5864 阅读 · 6 评论