资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个n*m的矩阵A,求A中的一个非空子矩阵,使这个子矩阵中的元素和最大。
其中,A的子矩阵指在A中行和列均连续的一块。
输入格式
输入的第一行包含两个整数n, m,分别表示矩阵A的行数和列数。
接下来n行,每行m个整数,表示矩阵A。
输出格式
输出一行,包含一个整数,表示A中最大的子矩阵中的元素和。
样例输入
3 3
-1 -4 3
3 4 -1
-5 -2 8
样例输出
10
样例说明
取最后一列,和为10。
数据规模和约定
对于50%的数据,1<=n, m<=50;
对于100%的数据,1<=n, m<=500,A中每个元素的绝对值不超过5000。
#include<bits/stdc++.h>
using namespace std;
int findmaxsubsequence(vector<int> nums) {
vector<int> dp(nums.size(), 0);
dp[0] = nums[0];
int res = dp[0];
for (int i = 1; i < nums.size(); i++) {
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
res = max(res, dp[i]);
}
return res;
}
int main() {
int m, n;
cin >> m >> n;
vector<vector<int> > matrix(m, vector<int>(n, 0));
//行累加数组
vector<vector<int> > sums(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)
cin >> matrix[i][j];
}
for (int j = 0; j < n; j++)
sums[0][j] = matrix[0][j];
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
sums[i][j] += sums[i - 1][j]+ matrix[i][j];
}
}
int res = INT_MIN;
//i-j行中的子矩阵
for (int i = 0; i < m; i++) {
for (int j = i; j < m; j++) {
vector<int> temp(n, 0);
for (int k = 0; k < n; k++) {
if (i == 0) temp[k] = sums[j][k];
else temp[k] = sums[j][k] - sums[i - 1][k];
}
int num = findmaxsubsequence(temp);
res = max(res, num);
}
}
cout << res << endl;
return 0;
}