最大子阵

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
  给定一个n*m的矩阵A,求A中的一个非空子矩阵,使这个子矩阵中的元素和最大。

其中,A的子矩阵指在A中行和列均连续的一块。
输入格式
  输入的第一行包含两个整数n, m,分别表示矩阵A的行数和列数。
  接下来n行,每行m个整数,表示矩阵A。
输出格式
  输出一行,包含一个整数,表示A中最大的子矩阵中的元素和。
样例输入
3 3
-1 -4 3
3 4 -1
-5 -2 8
样例输出
10
样例说明
  取最后一列,和为10。
数据规模和约定
  对于50%的数据,1<=n, m<=50;
  对于100%的数据,1<=n, m<=500,A中每个元素的绝对值不超过5000。

#include<bits/stdc++.h>
using namespace std;
int findmaxsubsequence(vector<int> nums) {
	vector<int> dp(nums.size(), 0);
	dp[0] = nums[0];
	int res = dp[0];
	for (int i = 1; i < nums.size(); i++) {
		dp[i] = max(dp[i - 1] + nums[i], nums[i]);
		res = max(res, dp[i]);
	}
	return res;
}
int main() {
	int m, n;
	cin >> m >> n;
	vector<vector<int> > matrix(m, vector<int>(n, 0));
	//行累加数组
	vector<vector<int> > sums(m, vector<int>(n, 0));
	for (int i = 0; i < m; i++) {
		for (int j = 0; j < n; j++)
			cin >> matrix[i][j];
	}
	for (int j = 0; j < n; j++)
		sums[0][j] = matrix[0][j];
	for (int i = 1; i < m; i++) {
		for (int j = 0; j < n; j++) {
			sums[i][j] += sums[i - 1][j]+ matrix[i][j];
		}
	}
	int res = INT_MIN;
	//i-j行中的子矩阵
	for (int i = 0; i < m; i++) {	
		for (int j = i; j < m; j++) {
			vector<int> temp(n, 0);
			for (int k = 0; k < n; k++) {
				if (i == 0) temp[k] = sums[j][k];
				else temp[k] = sums[j][k] - sums[i - 1][k];
			}
			int num = findmaxsubsequence(temp);
		    res = max(res, num);
		}
	}
	cout << res << endl;
	return 0;

}

参考链接:
https://blog.csdn.net/kavu1/article/details/50547401/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值