最长回文子序列

16 篇文章 0 订阅
4 篇文章 0 订阅

最长回文子序列

  给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
  子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。

解题思路:动态规划

  1. 定义状态:dp[i][j] 表示 s 的第 i 个字符到第 j 个字符组成的子串中,最长的回文序列长度是多少。
  2. 定义状态转移方式:
    如果 s 的第 i 个字符和第 j 个字符相同的话:
    d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] + 2 dp[i][j] = dp[i + 1][j - 1] + 2 dp[i][j]=dp[i+1][j1]+2
    如果 s 的第 i 个字符和第 j 个字符不同的话:
    d p [ i ] [ j ] = m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) dp[i][j]=max(dp[i+1][j],dp[i][j1])
    然后注意遍历顺序,i 从最后一个字符开始往前遍历,j 从 i + 1 开始往后遍历,这样可以保证每个子问题都已经算好了。

代码实现:

class Solution {
public:
	int longestPalindromeSubseq(string s) {
		int n = s.size();
		vector<vector<int>>dp(n, vector<int>(n));
		for (int i = n - 1; i >= 0; i--)
		{
			dp[i][j] = 1;
			char c1 = s[i];
			for (int j = i + 1; j < n; j++)
			{
				char c2 = s[j];
				if (c1 == c2)
				{
					dp[i][j] = dp[i + 1][j - 1] + 2;
				}
				else
				{
					dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
				}
			}
		}
        return dp[0][n - 1];
	}
};

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-palindromic-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

最长回文子序列(Longest Palindromic Subsequence,LPS)问题是指在一个给定字符串中找到一个最长回文子序列回文子序列是指一个序列本身不是回文串,但它是一个回文串的子序列。 在C++中,我们可以使用动态规划(Dynamic Programming,DP)的方法来解决这个问题。动态规划的主要思想是将一个大问题分解成小问题,然后从小问题出发,逐渐求得大问题的解。 以下是一个使用动态规划解决最长回文子序列问题的C++示例代码: ```cpp #include <iostream> #include <vector> #include <string> using namespace std; // 函数用于计算字符串str的最长回文子序列长度 int longestPalindromeSubseq(string str) { int n = str.size(); // 创建一个二维数组dp,用于存储子问题的解,初始化所有值为0 vector<vector<int>> dp(n, vector<int>(n, 0)); // 单个字符的最长回文子序列长度为1,所以对角线上的元素设置为1 for (int i = 0; i < n; i++) { dp[i][i] = 1; } // 如果两个字符相同,那么它俩组成的子序列长度为2 for (int cl = 2; cl <= n; cl++) { for (int i = 0; i < n - cl + 1; i++) { int j = i + cl - 1; if (str[i] == str[j] && cl == 2) { dp[i][j] = 2; } else if (str[i] == str[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]); } } } // 返回整个字符串最长回文子序列长度 return dp[0][n - 1]; } int main() { string str; cout << "请输入一个字符串:" << endl; cin >> str; cout << "最长回文子序列长度为:" << longestPalindromeSubseq(str) << endl; return 0; } ``` 在这段代码中,`dp[i][j]`表示字符串的第`i`个字符到第`j`个字符组成的子串的最长回文子序列长度。通过初始化对角线以及递推式逐步填充这个二维数组,最终可以得到整个字符串最长回文子序列长度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值