ubuntu安装docker,拉取tensorflow serving官方例子,部署Keras模型

本文介绍如何使用Docker安装TensorFlow Serving,并部署Keras模型。包括安装配置Docker、TensorFlow Serving,验证官方示例,以及将Keras模型转换为TensorFlow Serving支持的格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型框架: Keras
使用TensorFlow Serving部署

1.docker安装

ubuntu 18.04 安装docker 方式通过官方仓库安装

 sudo apt-get update

 sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    gnupg \
    lsb-release

秘钥

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

加入官方仓库

echo \
  "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \
  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

用apt安装

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io

验证docker是否安装成功

sudo docker run hello-world

2.安装TensorFlow Serving并验证

1.拉取 tf serving: sudo docker pull tensorflow/serving
2.下载官方例子进行验证 先打开目录cd /home/q/test_dir/,再git clone https://github.com/tensorflow/serving
启动服务在这里插入代码片

sudo docker run -t --rm -p 8501:8501 -v 
"/home/q/test_dir/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu:
/models/half_plus_two" -e MODEL_NAME=half_plus_two tensorflow/serving &

第二行为例子saved_model_half_plus_two_cpu的路径

验证官方例子:curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POT http://localhost:8501/v1/models/half_plus_two:predict
结果图:启动服务图
例子验证结果图

3.标题部署自己的模型

参考添加链接描述
先将Keras的.hdf5转化为pb文件

import tensorflow as tf
from keras.models import load_model

model_test = load_model("../CEMM/model/model/04.hdf5")

# export_path 后面一定要加一个版本号的目录,不然会报错 No versions of servable test found under base path
export_path = '../models_dir/000001/'

tf.keras.models.save_model(
    model_test,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)



运行自己代码 报错了在错误
在这里插入图片描述
应该是需要安装 tensorflow serving gpu版本
3.1移除tensorflow/serving镜像
移除镜像时,需要先删除镜像
先查看所有容器sudo docker ps -a再根据CONTAINER ID移除所有与镜像相关的容器sudo docker rm e291148abc3d,最后再移除容器

将自己模型版本部署时会有不兼容问题(应该是GPU版本和拉取的tensorFlow Serving不对)
考虑在windows上安装docker重新部署
3.2安装GPU版本

sudo docker pull tensorflow/serving:2.2.0-gpu

运行结果
安装之后就可以了(还未验证模型是否可用,但部署没出错误)

参考:
1.tf-seveing部署Keras模型 参考添加链接描述
ubantu安装docker
ubuntu安装 docker 和 tensorflow/serving 启动服务
添TensorFlow Serving:深度学习模型在生产环境的部署&上线

Ubuntu18.04安装docker方式

使用 Docker部署 Tensorflow Serving 模型服务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值