【数据结构】AVL树干货

AVL树

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有N个结点,其高度可保持在 ,搜索时间复杂度O(log2N)
AVL树的实现是由二叉搜索树和平衡因子完成的。

AVL树结点定义如下:

template <class T>
struct AVLTreeNode {
	AVLTreeNode* _pLeft;
	AVLTreeNode* _pRight;
	AVLTreeNode* _pParent;
	T _data;
	int _bf;	//平衡因子

	AVLTreeNode(const T& data) : _data(data)
		, _pLeft(nullptr)
		, _pRight(nullptr)
		, _pParent(nullptr)
		, _bf(0) {}
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入
过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点(注:要判断插入的结点是否为第一个结点)
// 找到二叉搜索树应该插入的位置
Node* pCur = _pRoot;
Node* pParent = nullptr;
while (pCur) {
	pParent = pCur;
	if (data < pCur->_data)
		pCur = pCur->_pLeft;
	else if (data > pCur->_data)
		pCur = pCur->_pRight;
	else
		return false;
}
//插入新节点
pCur = new Node(data);
if (data < pParent->_data)
	pParent->_pLeft = pCur;
else
	pParent->_pRight = pCur;
pCur->_pParent = pParent;

  1. 调整节点的平衡因子

pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  a.如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  b.如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
① 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
② 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
③ 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理

//更新pParent 的平衡因子
while (pParent) {
	if (pCur == pParent->_pLeft)
		--pParent->_bf;
	else
		++pParent->_bf;

	if (0 == pParent->_bf)	//父节点高度没有变,就插入成功了
		return true;
	else if (-1 == pParent->_bf || 1 == pParent->_bf) {	//父亲结点的父节点平衡因子也要变的,这就是结点结构体要保存父节点的原因,再更改上面的要循环上去,就是在循环里的原因
		pCur = pParent;
		pParent = pCur->_pParent;
	} else {	//双亲结点已经不满足AVL的性质了,对以双亲的为根的二叉树进行旋转
		if (2 == pParent->_bf) {
			if (pCur->_bf == 1)
				RotateL(pParent);
			else
				RotateRL(pParent);
		}
		else {
			if (pCur->_bf == -1)
				RotateR(pParent);
			else
				RotateLR(pParent);
		}
		//旋转之后就不需要再更新了,上面的高度还是那样
		break;
	}
}

旋转处理

1.pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
在这里插入图片描述

//右单旋
void RotateR(Node* pParent) {
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	pParent->_pLeft = pSubLR;
	if (pSubLR)
		pSubLR->_pParent = pParent;

	pSubL->_pRight = pParent;
	PNode pPParent = pParent->_pParent;
	pParent->_pParent = pSubL;

	//把pParent的父结点赋给pSubL的父结点
	pSubL->_pParent = pPParent;
	//判断pParent是不是根节点
	if (NULL == pPParent) {
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	} else {
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}
	//更改平衡因子
	pParent->_bf = pSubL->_bf = 0;
}

当pSubL的平衡因子为1时,执行左右双旋
在这里插入图片描述

//双旋:先左单旋在右单旋
void RotateLR(Node* pParent) {
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = pSubLR->_bf;

	RotateL(pParent->_pLeft);
	RotateR(pParent);

	//更改平衡因子, 因为左单旋和右单旋pParent和pSubL清零
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)  //不能else,还有不需要更新的情况
		pParent->_bf = 1;
}

2.pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值