C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
线段树的基本操作与概念
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。 [1]
对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。
线段树详细https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html
十分感谢大佬
#include<bits/stdc++.h>
using namespace std;
int diren[50000];
int ans=0;
struct tree
{
int head,rag;
int sum;//记录一个区间内的总量
} t[200005];//建造树的结构体
void builttree(int head,int rag,int jishu)
{
t[jishu].head=head;
t[jishu].rag=rag;
if(head==rag)
{
scanf("%d",&t[jishu].sum);
return;
}
int mid=(head+rag)/2;
builttree(head,mid,jishu*2);
builttree(mid+1,rag,jishu*2+1);
t[jishu].sum=t[jishu*2].sum+t[jishu*2+1].sum;//以上三行代码很重要
}
void updata(int head,int rag,int jishu,int weizi,int add)
{
if(head==rag)
{
t[jishu].sum+=add;
return;
}
int mid=(head+rag)/2;
if(weizi<=mid)
updata(head,mid,jishu*2,weizi,add);
else
updata(mid+1,rag,jishu*2+1,weizi,add);
t[jishu].sum=t[jishu*2].sum+t[jishu*2+1].sum;
}
void query(int head,int rag,int jishu,int start,int end1)
{
if(start<=head&&end1>=rag)
{
ans+=t[jishu].sum;
return;
}
int mid=(head+rag)/2;
if(end1<=mid)
query(head,mid,jishu*2,start,end1);
else if(start>mid)
query(mid+1,rag,jishu*2+1,start,end1);
else
{
query(head,mid,jishu*2,start,end1);
query(mid+1,rag,jishu*2+1,start,end1);
}
}
int main()
{
int t,p=1;
cin>>t;
while(t--)
{
int yindigeshu;
cin>>yindigeshu;
builttree(1,yindigeshu,1);
char c[25];
int i,j;
cin>>c;
cout<<"Case "<<p<<':'<<endl;
while(c[0]!='E')
{
cin>>i>>j;
if(c[0]=='Q')
{
query(1,yindigeshu,1,i,j);
cout<<ans<<endl;
ans=0;
}
if(c[0]=='A')
{
updata(1,yindigeshu,1,i,j);
}
if(c[0]=='S')
{
updata(1,yindigeshu,1,i,-j);
}
cin>>c;
}
p++;
}
}