闪电优化算法LAPO-动态神经网络优化算法NNA-嗅觉优化算法SAO-长鼻浣熊优化算法COA-草原犬优化算法PDO【单目标优化算法】在23个测试函数上对比(Matlab代码实现)

该文通过比较闪电优化算法、动态神经网络算法、嗅觉优化算法、长鼻浣熊算法和草原犬优化算法,展示了它们在不同维度和适应度函数下的性能。每个算法均在设定的最大迭代次数和特定变量边界条件下运行,以找到最佳解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

% 使用方法

%__________________________________________

% fobj = @YourCostFunction 设定适应度函数

% dim = number of your variables 设定维度

% Max_iteration = maximum number of generations 设定最大迭代次数

% SearchAgents_no = number of search agents 种群数量

% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n 变量下边界

% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n 变量上边界

% If all the variables have equal lower bound you can just

% define lb and ub as two single number numbers

% To run SSA: [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)

%__________________________________________

clc

close all

clear all

rng('default');

SearchAgents_no=30; % Number of search agents 种群数量

Function_name='F7'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数

Max_iteration=500; % Maximum numbef of iterations 设定最大迭代次数

% Load details of the selected benchmark function

[lb,ub,dim,fobj]=Get_Functions_details(Function_name); %设定边界以及优化函数

%% 闪电优化算法

[fMin , bestX, LAPOcurve ] = LAPO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化

%% 动态神经网络算法

[Alpha_score,Alpha_pos,G,NNAcurve]=NNA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化

%% 嗅觉优化算法

[gBestScore,gBest,SAOcurve]=SAO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化

%% 长鼻浣熊算法

[Leader_score,Best, COAcurve]=COA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化

%% 草原犬优化算法

[Best_score,Best_pos,PDOcurve]=PDO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); %开始优化

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值