【LSTM-BP-SVR】基于长短期记忆神经网络LSTM联立BP神经网络联立支持向量机SVR回归预测,组合模型LSTM-BP-SVR回归预测,主要对权重优化,多输入单输出模型。
1.主要用算法对权重优化,多输入单输出模型。
2.对优化后的权重,分别组合叠加形成新的预测值,减少单漠型预测的误差。
评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
%% 组合
T_sim1=Best_pos(1)*T_sim11 + Best_pos(2)*T_sim21 + Best_pos(3)*T_sim31;
T_sim2=Best_pos(1)*T_sim12 + Best_pos(2)*T_sim22+ Best_pos(3)*T_sim32;
%% LSTM指标
disp('LSTM训练集误差指标')
[mae1,rmse1,mape1,r1,error1]=calc_error(T_sim11,T_train);
disp('LSTM测试集误差指标')
[mae2,rmse2,mape2,r2,error2]=calc_error(T_sim12,T_test);
%% BP指标
disp('BP训练集误差指标')
[mae3,rmse3,mape3,r3,error3]=calc_error(T_sim21,T_train);
disp('BP测试集误差指标')
[mae4,rmse4,mape4,r4,error4]=calc_error(T_sim22,T_test);
%% SVR指标
disp('SVR训练集误差指标')
[mae5,rmse5,mape5,r5,error5]=calc_error(T_sim31,T_train);
disp('SVR测试集误差指标')
[mae6,rmse6,mape6,r6,error6]=calc_error(T_sim32,T_test);
智能算法及其模型预测