【LSTM-BP-SVR】基于长短期记忆神经网络LSTM联立BP神经网络联立支持向量机SVR回归预测,组合模型LSTM-BP-SVR回归预测,主要对权重优化,多输入单输出模型。1.主要用算法对权重

【LSTM-BP-SVR】基于长短期记忆神经网络LSTM联立BP神经网络联立支持向量机SVR回归预测,组合模型LSTM-BP-SVR回归预测,主要对权重优化,多输入单输出模型。

1.主要用算法对权重优化,多输入单输出模型。

2.对优化后的权重,分别组合叠加形成新的预测值,减少单漠型预测的误差。

评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。

%% 组合

T_sim1=Best_pos(1)*T_sim11 + Best_pos(2)*T_sim21 + Best_pos(3)*T_sim31;

T_sim2=Best_pos(1)*T_sim12 + Best_pos(2)*T_sim22+ Best_pos(3)*T_sim32;

%% LSTM指标

disp('LSTM训练集误差指标')

[mae1,rmse1,mape1,r1,error1]=calc_error(T_sim11,T_train);

disp('LSTM测试集误差指标')

[mae2,rmse2,mape2,r2,error2]=calc_error(T_sim12,T_test);

%% BP指标

disp('BP训练集误差指标')

[mae3,rmse3,mape3,r3,error3]=calc_error(T_sim21,T_train);

disp('BP测试集误差指标')

[mae4,rmse4,mape4,r4,error4]=calc_error(T_sim22,T_test);

%% SVR指标

disp('SVR训练集误差指标')

[mae5,rmse5,mape5,r5,error5]=calc_error(T_sim31,T_train);

disp('SVR测试集误差指标')

[mae6,rmse6,mape6,r6,error6]=calc_error(T_sim32,T_test);

智能算法及其模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值