机器学习
文章平均质量分 97
WarrenChou_
当你的才华支撑不起你的野心时,只有静下心来好好学习!
展开
-
线性模型正则化
一、正则线性模型减少过度拟合的一个好办法就是对模型正则化(即约束它):它拥有的自由度越低,就越不容易过度拟合数据。比如,将多项式模型正则化的简单方法就是降低多项式的阶数。对线性模型来说,正则化通常通过约束模型的权重来实现。常见的对权重进行约束的方法有:岭回归(Ridge Regression)、套索回归(lasso Regression)及弹性网络(Elastic Regression)。二...原创 2020-01-08 21:50:12 · 1706 阅读 · 0 评论 -
Logistic回归
文章目录一、数据集1.导入数据集2.测试数据集二、二元分类器1.逻辑回归2.训练逻辑回归模型三、多类别分类器1.Softmax回归2.训练Softmax回归模型四、性能评估一、数据集1.导入数据集鸢尾植物数据集:这是一个非常著名的数据集,共有150朵鸢尾花,分别来自三个不同品种:Setosa鸢尾花、Versicolor鸢尾花和Virginica鸢尾花,数据里包含花的萼片以及花瓣的长度和宽度。...原创 2020-01-06 17:05:07 · 474 阅读 · 0 评论 -
Jupyter notebook学习笔记——线性回归、多项式回归
import numpy as npX=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)from sklearn.linear_model import LinearRegressionlin_reg=LinearRegression()lin_reg.fit(X,y)LinearRegression(copy_X=True,...原创 2020-01-04 17:46:32 · 5967 阅读 · 2 评论 -
随机梯度下降(SGD)分类
文章目录一、数据导入1.数据集2.导入数据集3.测试数据集二、准备测试集三、二元分类器四、性能考核1.使用交叉验证测量精度2.混淆矩阵3.精度和召回率4.ROC曲线五、多类别分类器六、错误分析一、数据导入1.数据集MNIST:是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。这个数据集被广为使用,因此也被称作是机器学习领域的“Hello World...原创 2020-01-03 22:26:11 · 5179 阅读 · 1 评论