54.螺旋矩阵

题目

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

解法

这是一个经典的螺旋矩阵问题。你可以使用 C++ 来解决,通过依次遍历矩阵的边界,然后逐步缩小矩阵的范围。代码如下:

#include <iostream>
#include <vector>

using namespace std;

vector<int> spiralOrder(vector<vector<int>>& matrix) {
    if (matrix.empty()) return {};

    vector<int> result;
    int m = matrix.size();
    int n = matrix[0].size();
    int left = 0, right = n - 1, top = 0, bottom = m - 1;

    while (left <= right && top <= bottom) {
        // 从左到右遍历上边界
        for (int i = left; i <= right; ++i) {
            result.push_back(matrix[top][i]);
        }
        top++;  // 上边界向下收缩

        // 从上到下遍历右边界
        for (int i = top; i <= bottom; ++i) {
            result.push_back(matrix[i][right]);
        }
        right--;  // 右边界向左收缩

        if (top <= bottom) {
            // 从右到左遍历下边界
            for (int i = right; i >= left; --i) {
                result.push_back(matrix[bottom][i]);
            }
            bottom--;  // 下边界向上收缩
        }

        if (left <= right) {
            // 从下到上遍历左边界
            for (int i = bottom; i >= top; --i) {
                result.push_back(matrix[i][left]);
            }
            left++;  // 左边界向右收缩
        }
    }

    return result;
}

int main() {
    vector<vector<int>> matrix = {{1, 2, 3}, 
                                  {4, 5, 6}, 
                                  {7, 8, 9}};
    
    vector<int> result = spiralOrder(matrix);

    for (int num : result) {
        cout << num << " ";
    }

    return 0;
}

代码说明:

  1. spiralOrder 函数接受一个二维矩阵作为输入,并返回按照螺旋顺序排列的矩阵元素的列表。
  2. 定义四个边界:leftrighttopbottom,分别表示矩阵的左、右、上、下边界。
  3. 使用 while 循环依次遍历边界,首先从左到右遍历上边界,然后从上到下遍历右边界,接着从右到左遍历下边界,最后从下到上遍历左边界。
  4. 每次遍历完一圈后,相应地收缩边界,直到不再满足条件。

输出结果:

对输入矩阵 {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},输出将为:

1 2 3 6 9 8 7 4 5

这种方法的时间复杂度为 O(m * n),其中 m 是矩阵的行数,n 是矩阵的列数。

如何螺旋地来遍历矩阵?

result.push_back()

result.push_back() 是 C++ 标准库中 std::vector 容器的方法之一,用于将一个元素添加到 vector 的末尾。
有点像append

矩阵的大小如何获取?

int m = matrix.size();
int n = matrix[0].size();

相当于获取两个数组的长度,行列

这道题的关键点?

这道“螺旋矩阵”题的关键点在于如何按照正确的顺序遍历矩阵的所有元素。具体而言,有几个重要的逻辑点需要关注:

关键点 1:边界收缩的策略

在螺旋顺序遍历过程中,矩阵的边界不断收缩。为了确保我们遍历所有元素并避免重复,需要明确处理好四个边界:

  • 上边界 (top):从左到右遍历上边界的元素后,收缩上边界,top++
  • 右边界 (right):从上到下遍历右边界的元素后,收缩右边界,right--
  • 下边界 (bottom):从右到左遍历下边界的元素后,收缩下边界,bottom--
  • 左边界 (left):从下到上遍历左边界的元素后,收缩左边界,left++

关键点 2:循环停止条件

我们需要在遍历的过程中确保不会越界,尤其在矩阵的某一边已经收缩到尽头时,不能再继续访问该边的元素。因此,循环的停止条件是当左边界超过右边界或者上边界超过下边界时,说明已经遍历完所有元素,此时退出循环。

关键点 3:遍历的方向

螺旋顺序本质上是遵循一个 顺时针的方向,因此需要依次遍历:

  1. 从左到右 遍历上边界。
  2. 从上到下 遍历右边界。
  3. 从右到左 遍历下边界(在确保上边界依然小于等于下边界的前提下)。
  4. 从下到上 遍历左边界(在确保左边界依然小于等于右边界的前提下)。

每一次完成一圈后,边界收缩,进入下一圈的遍历。

关键点 4:处理不同形状的矩阵

矩阵的形状可能不同,例如:

  • 行数多于列数,或者列数多于行数。
  • 矩阵为奇数行列或偶数行列。

因此,代码中的边界判断 (if 语句) 和循环控制必须能处理任意形状的矩阵,确保不会多次访问某个已经遍历过的元素。

关键点 5:时间复杂度

遍历矩阵的过程中,每个元素只会被访问一次,因此时间复杂度为 ( O(m \times n) ),其中 ( m ) 是矩阵的行数,( n ) 是矩阵的列数。这个复杂度是最优的,因为我们必须访问矩阵中的每个元素。

总结

螺旋矩阵问题的关键在于:

  1. 正确的边界收缩逻辑。
  2. 循环停止条件的控制。
  3. 按照顺时针方向分段遍历矩阵。
  4. 对不同形状矩阵的处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值