一、题目
中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。
二、思路
2.1 解题思路
用一个数据结构来维护滑动窗口,树?因为之前使用的优先队列(大根堆)或者哈希表似乎都不能快速找到中位数。
偶数的情况怎么处理?就是这个数据结构能否弹出中间值。
2.2 代码尝试
class Solution {
public:
vector<double> medianSlidingWindow(vector<int>& nums, int k) {
vector<double> aa;
//用什么数据结构维护?树吗
for(int i=0;i<k;i++){
tree.emplace(nums[i]);
}
double temp=0.0;
if(k%2==1){
temp=tree.pop();
}else{
temp=tree.pop()//如何处理偶数
}
aa.emplace(temp);
for(int i=k;i<nums.size();i++){
}
}
};
2.3 疑难问题
用一个数据结构来维护滑动窗口,树?
偶数的情况怎么处理?
三、解法
class DualHeap {
private:
// 大根堆,维护较小的一半元素
priority_queue<int> small;
// 小根堆,维护较大的一半元素
priority_queue<int, vector<int>, greater<int>> large;
// 哈希表,记录「延迟删除」的元素,key 为元素,value 为需要删除的次数
unordered_map<int, int> delayed;
int k;
// small 和 large 当前包含的元素个数,需要扣除被「延迟删除」的元素
int smallSize, largeSize;
public:
DualHeap(int _k): k(_k), smallSize(0), largeSize(0) {}
private:
// 不断地弹出 heap 的堆顶元素,并且更新哈希表
template<typename T>
void prune(T& heap) {
while (!heap.empty()) {
int num = heap.top();
if (delayed.count(num)) {
--delayed[num];
if (!delayed[num]) {
delayed.erase(num);
}
heap.pop();
}
else {
break;
}
}
}
// 调整 small 和 large 中的元素个数,使得二者的元素个数满足要求
void makeBalance() {
if (smallSize > largeSize + 1) {
// small 比 large 元素多 2 个
large.push(small.top());
small.pop();
--smallSize;
++largeSize;
// small 堆顶元素被移除,需要进行 prune
prune(small);
}
else if (smallSize < largeSize) {
// large 比 small 元素多 1 个
small.push(large.top());
large.pop();
++smallSize;
--largeSize;
// large 堆顶元素被移除,需要进行 prune
prune(large);
}
}
public:
void insert(int num) {
if (small.empty() || num <= small.top()) {
small.push(num);
++smallSize;
}
else {
large.push(num);
++largeSize;
}
makeBalance();
}
void erase(int num) {
++delayed[num];
if (num <= small.top()) {
--smallSize;
if (num == small.top()) {
prune(small);
}
}
else {
--largeSize;
if (num == large.top()) {
prune(large);
}
}
makeBalance();
}
double getMedian() {
return k & 1 ? small.top() : ((double)small.top() + large.top()) / 2;
}
};
class Solution {
public:
vector<double> medianSlidingWindow(vector<int>& nums, int k) {
DualHeap dh(k);
for (int i = 0; i < k; ++i) {
dh.insert(nums[i]);
}
vector<double> ans = {dh.getMedian()};
for (int i = k; i < nums.size(); ++i) {
dh.insert(nums[i]);
dh.erase(nums[i - k]);
ans.push_back(dh.getMedian());
}
return ans;
}
};
作者:力扣官方题解
链接:https://leetcode.cn/problems/sliding-window-median/solutions/588643/hua-dong-chuang-kou-zhong-wei-shu-by-lee-7ai6/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
四、收获
4.1 心得
使用了两个优先队列,这里的数据结构相当于是自己写了个类设计了一个,所以不一定要直接用现成的大根堆、哈希表,有的时候是设计出来的组合。
延迟删除的设计,使用哈希表来维护
4.2 举一反三
可能会需要有复杂的数据结构设计,要自己写一个类