480.滑动窗口中位数

一、题目

中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。

二、思路

2.1 解题思路

用一个数据结构来维护滑动窗口,树?因为之前使用的优先队列(大根堆)或者哈希表似乎都不能快速找到中位数。
偶数的情况怎么处理?就是这个数据结构能否弹出中间值。

2.2 代码尝试

class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        vector<double> aa;
        //用什么数据结构维护?树吗
        for(int i=0;i<k;i++){
            tree.emplace(nums[i]);
        }
        double temp=0.0;
        if(k%2==1){
            temp=tree.pop();
        }else{
            temp=tree.pop()//如何处理偶数
        } 
        aa.emplace(temp);
        for(int i=k;i<nums.size();i++){

        }
    }
};

2.3 疑难问题

用一个数据结构来维护滑动窗口,树?
偶数的情况怎么处理?

三、解法

class DualHeap {
private:
    // 大根堆,维护较小的一半元素
    priority_queue<int> small;
    // 小根堆,维护较大的一半元素
    priority_queue<int, vector<int>, greater<int>> large;
    // 哈希表,记录「延迟删除」的元素,key 为元素,value 为需要删除的次数
    unordered_map<int, int> delayed;

    int k;
    // small 和 large 当前包含的元素个数,需要扣除被「延迟删除」的元素
    int smallSize, largeSize;

public:
    DualHeap(int _k): k(_k), smallSize(0), largeSize(0) {}

private:
    // 不断地弹出 heap 的堆顶元素,并且更新哈希表
    template<typename T>
    void prune(T& heap) {
        while (!heap.empty()) {
            int num = heap.top();
            if (delayed.count(num)) {
                --delayed[num];
                if (!delayed[num]) {
                    delayed.erase(num);
                }
                heap.pop();
            }
            else {
                break;
            }
        }
    }

    // 调整 small 和 large 中的元素个数,使得二者的元素个数满足要求
    void makeBalance() {
        if (smallSize > largeSize + 1) {
            // small 比 large 元素多 2 个
            large.push(small.top());
            small.pop();
            --smallSize;
            ++largeSize;
            // small 堆顶元素被移除,需要进行 prune
            prune(small);
        }
        else if (smallSize < largeSize) {
            // large 比 small 元素多 1 个
            small.push(large.top());
            large.pop();
            ++smallSize;
            --largeSize;
            // large 堆顶元素被移除,需要进行 prune
            prune(large);
        }
    }

public:
    void insert(int num) {
        if (small.empty() || num <= small.top()) {
            small.push(num);
            ++smallSize;
        }
        else {
            large.push(num);
            ++largeSize;
        }
        makeBalance();
    }

    void erase(int num) {
        ++delayed[num];
        if (num <= small.top()) {
            --smallSize;
            if (num == small.top()) {
                prune(small);
            }
        }
        else {
            --largeSize;
            if (num == large.top()) {
                prune(large);
            }
        }
        makeBalance();
    }

    double getMedian() {
        return k & 1 ? small.top() : ((double)small.top() + large.top()) / 2;
    }
};

class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        DualHeap dh(k);
        for (int i = 0; i < k; ++i) {
            dh.insert(nums[i]);
        }
        vector<double> ans = {dh.getMedian()};
        for (int i = k; i < nums.size(); ++i) {
            dh.insert(nums[i]);
            dh.erase(nums[i - k]);
            ans.push_back(dh.getMedian());
        }
        return ans;
    }
};

作者:力扣官方题解
链接:https://leetcode.cn/problems/sliding-window-median/solutions/588643/hua-dong-chuang-kou-zhong-wei-shu-by-lee-7ai6/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

四、收获

4.1 心得

使用了两个优先队列,这里的数据结构相当于是自己写了个类设计了一个,所以不一定要直接用现成的大根堆、哈希表,有的时候是设计出来的组合。
在这里插入图片描述
延迟删除的设计,使用哈希表来维护
在这里插入图片描述
在这里插入图片描述

4.2 举一反三

可能会需要有复杂的数据结构设计,要自己写一个类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值