给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
//1. dp 方程 f(i,j) = max( f(i+1,j),f(i,j-1),f(i,j) ) , 在[i,j] 区间内的和
//2. dp 方程 f(i+1) = f(i)<0 ? max(v(i+1),f(i)) : max(f(i)+v(i+1),f(i))
//3. 化简2 方程 f(i+1) = f(i)>=0? f(i)+v(i+1) : v(i)>f(i) ? v(i):f(i);
//4. 官方题解: f[i+1] = max(f[i],0)+v(i+1)
public int maxSubArray(int[] nums) {
if(nums.length==1) return nums[0];
int[]dp = new int[nums.length ];
int max=Integer.MIN_VALUE;
dp[0]=nums[0];
for(int i=1;i<nums.length;++i)
{
dp[i] = Math.max(dp[i-1]+nums[i] , nums[i] );
}
for(int t:dp) max= Math.max(max,t);
return max;
}
}
思路总结:做这种题,最重要的是列出dp方程
下面看leetCode 152题,这个题的dp方程就比较难写
首先要注意的一点是:
1.会存在负负得正的情况,所以还要把负数也记录下来
给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-product-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
//dp 方程: dp[i] = Math.max(dp[i-1],dp[i-1]*V[i])
public int maxProduct(int[] nums) {
// int[]dp = new int[nums.length];
// dp[0] = nums[0];
int max =nums[0], res = max,min = res;
for(int i=1;i<nums.length;++i)
{
if(nums[i]<0)
{
int t = min;
min = max;max=t;
}
max = Math.max(max*nums[i],nums[i]);
min = Math.min(min*nums[i],nums[i]);
res = Math.max(max,res);
}
return res;
}
}