霹雳吧啦Wz_深度学习-图像分类篇章_1.1 卷积神经网络基础_笔记

深度学习-图像分类篇章

参考笔记

卷积神经网络

  1. 英文:Convolutional Neural Network,CNN
  2. 雏形:1998年LeCun的LeNet5,第一个卷积神经网络
  3. 包含:
    • 卷积层:Convolutions
    • 下采样层:Subsampling
    • 全连阶层:Full connection
      在这里插入图片描述

全连阶层

  1. 神经元在这里插入图片描述
  2. BP神经网络:神经元按列排列,列与列全脸机
    • 误差值:从左到右网络输出一个值,与期望输出对比得到
    • 每个节点的偏导数->每个节点的误差梯度
    • 损失值应用误差梯度->误差的反向传播
      在这里插入图片描述

卷积层

  1. 卷积网络特有的网络结构
  2. 卷积:
  • 目的:提取特征
  • 过程:一个滑动窗口在特征图上滑动
  • 特性:
    • 局部感知
    • 权值共享:渐少参数量
  1. 特点:
  • 卷积核的channel = 输入特征图的channel
  • 输出特征channel = 卷积核个数
  1. 偏置:
  • 卷积得到的向量+偏置值
  1. 激活函数
  • 加入非线性变换
  • 分类:
    • sigmoid:求导麻烦
    • ReLu:使用较多,但要求学习率不能太大,否则神经元失活多
      在这里插入图片描述

池化层

  1. 稀疏处理,渐少运算量
  2. 分类:
    • maxpooling下采样
    • averagepooling下采样
      在这里插入图片描述
  3. 特点:
    • 没有训练参数
    • 改变w、h,不改变channel
    • 池化核大小 = 步长 -> 等比例缩小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

书文的学习记录本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值