DFS的复杂题意大模拟(CSP-T3方向)
题目概述
题目叙述
从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
1同花顺: 同时满足规则 5 和规则 4.
2炸弹 : 5张牌其中有4张牌的大小相等.
3三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
4同花 : 5张牌都是相同花色的.
5顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
6三条: 5张牌其中有3张牌的大小相等.
7两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
8一对: 5张牌其中有2张牌的大小相等.
9要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
INPUT
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).
OUTPUT
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
输入输出样例
第一组:
输入样例:
5 2
1 0 3 1
输出样例:
0 0 0 0 8 0 12 36 0
第二组:
输入样例:
25 4
0 0 24 3
输出样例:
0 2 18 0 0 644 1656 36432 113344
题目重述
题目一眼就能看出时一道典型的大模拟题:复杂的设定、繁多的场景要求、大量的分支种类,静下心来分析题目的考察方向和核心算法。
通过划去无用的场景,可以将问题缩减为:
给定牌的数值大小和花色数量,范围内的牌面都可以选用。现给定2张牌面,选择剩下的三张牌并且形成一套牌面(每张牌不可重复选择)
对得到的牌面,分成9个类别。要求计算所有得到的牌面,并统计9种牌面出现的次数
解题思路
通过对题意的剖析,可以看出整个任务分成两个部分:
1、得到所有牌面可能取值
2、根据牌面进行分类并统计个数
任务1解决方案:
注意到题目中是要求遍历全部的牌面,说到遍历那就可以清晰地将算法确定到DFS或者BFS上面。,由于在遍历过程中要求遍历所有情况且需要判断牌面所属类型,方便数据的存储,选用DFS可以使编码更为简单有效。
(如果选用BFS,要存储前置节点等问题,增大工作量和错误概率)
任务二解决方案:
分析9种牌面我们可以得到下面的分析:
对花色的分类只有两类:同花 & 非同花
对数值的分类有两个维度:
1、五张牌是否是顺子
2、如果不是顺子,有多少张重复的牌型
分析清楚只需要简单的操作就可以完成分类:
一重判断–是否同花:遍历访问五张牌的花色即可完成
二重判断–是否顺子:使用STL中的sort()函数排序,再判断五个数值的大小是否阶梯性+1增长即可
三重判断–如果不是顺子,初始化一个计数数组统计每个数值的出现次数,分情况写分支即可解决。
总结
大模拟题,看似题目难懂,十分复杂困难,容易给人带来畏惧心理。但若能够沉下心,仔细分析题意,将核心算法与其他任务剥离开,分成模块解决,一切迎刃而解。
题目源码
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int num=0;//要处理的数字个数
int col=0;//要处理的花色个数
struct card
{
int number;
int color;
bool operator<(card & a)
{
return number<a.number;
}
}cards[5];
int vis [26][5];
int cont=0;
int list[9];
int number_list[26];
void