OpenCV-图像梯度与边缘提取

图像梯度与边缘提取

Sobel和Scharr算子

Sobel算子是高斯平滑加微分运算的联合运算,因此它更抗噪声。如果ksize = -1,则使用3x3 Scharr滤波器,比3x3 Sobel滤波器具有更好的结果。

Sobel算子:
k e r n e l = [ − 1 0 1 − 2 0 2 − 1 0 1 ] / / 水 平 kernel = \left[ {\begin{matrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \\ \end{matrix}} \right]//水平 kernel=121000121//
k e r n e l = [ − 1 − 2 − 1 0 0 0 1 2 1 ] / / 垂 直 kernel = \left[ {\begin{matrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \\ \end{matrix}} \right]//垂直 kernel=101202101//
Scharr算子:
k e r n e l = [ − 3 0 3 − 10 0 10 − 3 0 3 ] / / 水 平 kernel = \left[ {\begin{matrix} -3 & 0 & 3 \\ -10 & 0 & 10 \\ -3 & 0 & 3 \\ \end{matrix}} \right]//水平 kernel=31030003103//
k e r n e l = [ − 3 − 10 − 3 0 0 0 3 10 3 ] / / 垂 直 kernel = \left[ {\begin{matrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ 3 & 10 & 3 \\ \end{matrix}} \right]//垂直 kernel=30310010303//

cv2.Sobel

Sobel滤波器

Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
  • sec:是需要处理的图像;
  • ddepth:图像的深度,-1表示采用的是与原图像相同的深度。目标图像的深度必须大于等于原图像的深度
  • dx和dy表示的是求导的阶数,0表示这个方向上没有求导,一般为0、1、2。
  • dst:目标图像
  • ksize是Sobel算子的大小,必须为1、3、5、7。
  • scale是缩放导数的比例常数,默认情况下没有伸缩系数。
  • delta是一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。
  • borderType是判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。

注意: Sobel函数求完导数后会有负值,还有会大于255的值。而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。第二个参数可以传cv.CV_32F。在经过处理后,要用convertScaleAbs()函数将其转回原来的uint8形式。否则将无法显示图像,而只是一副灰色的窗口。

cv2.convertScaleAbs

在输入数组的每个元素上,函数convertScaleAbs依次执行三个操作:缩放,获取绝对值,转换为无符号的8位类型

convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
  • src: 输入数组。
  • dst: 输出数组。
  • alpha: 可选比例因子。
  • beta: 可选增量添加到缩放值。

cv2.Scharr

Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst

参数与Sobel()基本一致
Scharr()函数提供了比标准Sobel函数更精确的计算结果。

示例

def sobel_gradient(image):
    """sobel算子梯度滤波(一阶导数)"""
    grad_x = cv.Sobel(image, cv.CV_32F, 1, 0)  # x方向的
    grad_y = cv.Sobel(image, cv.CV_32F, 0, 1)  # y方向的

    # grad_x = cv.Scharr(image, cv.CV_32F, 1, 0)  # 采用Scharr边缘更突出
    # grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)

    gradx = cv.convertScaleAbs(grad_x)  # 由于算完的图像有正有负,所以对其取
    绝对值并转换回uint8
    grady = cv.convertScaleAbs(grad_y)

    # 计算两个图像的权值和,dst = src1*alpha + src2*beta + gamma
    gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)

    cv.imshow("gradx", gradx)
    cv.imshow("grady", grady)
    cv.imshow("gradient", gradxy)

结果:

在这里插入图片描述

在这里插入图片描述

参考链接:

Laplacian算子

计算了由关系

Δ s r c = δ 2 s r c δ x 2 + δ 2 s r c δ y 2 \Delta src = \frac{\delta^2 src}{\delta x^2}+\frac{\delta^2 src}{\delta y^2} Δsrc=δx2δ2src+δy2δ2src

给出的图像的拉普拉斯图,它是每一阶导数通过Sobel算子计算。如果ksize = 1,然后使用以下内核用于过滤:

k e r n e l = [ 0 1 0 1 − 4 1 0 1 0 ] / / 4 邻 域 式 , 默 认 的 是 这 个 kernel = \left[ {\begin{matrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \\ \end{matrix}} \right]//4邻域式,默认的是这个 kernel=010141010//4
补充:
k e r n e l = [ 1 1 1 1 − 8 1 1 1 1 ] / / 8 邻 域 式 kernel = \left[ {\begin{matrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \\ \end{matrix}} \right]//8邻域式 kernel=111181111//8

cv2.Laplacian

Laplacian滤波器

Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
  • src:原图像
  • ddepth:图像的深度,-1表示采用的是与原图像相同的深度。目标图像的深度必须大于等于原图像的深度
  • dst:目标图像
  • ksize:算子的大小,必须为1、3、5、7。默认为1
  • scale:是缩放导数的比例常数,默认情况下没有伸缩系数
  • delta:是一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中
  • borderType:是判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT

示例

def laplace_gradient(image):
    """Laplacian算子梯度滤波(二阶导数)"""
    dst = cv.Laplacian(image,cv.CV_32F)
    lpls = cv.convertScaleAbs(dst)
    cv.imshow("laplace_gradient", lpls)

结果:
在这里插入图片描述

canny边缘提取

  1. 高斯模糊——gaussian
  2. 灰度转换——cvtColor
  3. 计算梯度——Sobel/Scharr
  4. 非最大信号抑制
  5. 高低阈值输出二值图像
  • 第一步:使用高斯滤波器进行滤波,去除噪音点

    • 使用5x5高斯滤波器消除图像中的噪声
  • 第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向

    • Sobel核在水平和垂直方向上对平滑的图像进行滤波,以在水平方向(Gx)和垂直方向(Gy)上获得一阶导数
      E d g e _ G r a d i e n t    ( G ) = G x 2 + G y 2 A n g l e    ( θ ) = tan ⁡ − 1 ( G y G x ) Edge\_Gradient \; (G) = \sqrt{G_x^2 + G_y^2} \\ Angle \; (\theta) = \tan^{-1} \bigg(\frac{G_y}{G_x}\bigg) Edge_Gradient(G)=Gx2+Gy2 Angle(θ)=tan1(GxGy)
  • 第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应

    • 在获得梯度大小和方向后,将对图像进行全面扫描,以去除可能不构成边缘的所有不需要的像素。为此,在每个像素处,检查像素是否是其在梯度方向上附近的局部最大值。
    • 在这里插入图片描述
      点A在边缘(垂直方向)上。渐变方向垂直于边缘。点B和C在梯度方向上。因此,将A点与B点和C点进行检查,看是否形成局部最大值。如果是这样,则考虑将其用于下一阶段,否则将其抑制(置为零)。 简而言之,得到的结果是带有“细边”的二进制图像。
  • 第四步:应用双阈值(磁滞阈值),来确定真实和潜在的边缘

    • 需要两个阈值minVal和maxVal。强度梯度大于maxVal的任何边缘必定是边缘,而小于minVal的那些边缘必定是非边缘,因此将其丢弃。介于这两个阈值之间的对象根据其连通性被分类为边缘或非边缘。如果将它们连接到“边缘”像素,则将它们视为边缘的一部分。否则,它们也将被丢弃。
    • 在这里插入图片描述
      边缘A在maxVal之上,因此被视为“确定边缘”。尽管边C低于maxVal,但它连接到边A,因此也被视为有效边,我们得到了完整的曲线。但是边缘B尽管在minVal之上并且与边缘C处于同一区域,但是它没有连接到任何“确保边缘”,因此被丢弃。因此,非常重要的一点是我们必须相应地选择minVal和maxVal以获得正确的结果。
  • 第五步:通过抑制弱边缘来完成最终的边缘检测

cv2.canny

canny边缘检测

Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges
  • image:要检测的图像
  • threshold1:阈值1(最小值)
  • threshold2:阈值2(最大值),使用此参数进行明显的边缘检测。
  • edges:图像边缘信息
  • apertureSize:sobel算子(卷积核)大小,默认情况下为3
  • L2gradient :布尔值。
    • True: 使用更精确的L2范数进行计算(即两个方向的导数的平方和再开方)
      E d g e _ G r a d i e n t    ( G ) = G x 2 + G y 2 Edge\_Gradient \; (G) = \sqrt{G_x^2 + G_y^2} \\ Edge_Gradient(G)=Gx2+Gy2
    • False:使用L1范数(直接将两个方向导数的绝对值相加)
      E d g e _ G r a d i e n t    ( G ) = ∣ G x ∣ + ∣ G y ∣ Edge\_Gradient \; (G) = \left| G_x\right| + \left| G_y\right| Edge_Gradient(G)=Gx+Gy

注意: 一般来说,threshold1 : threshold2 = 1 : 3 / 1 : 2 (我也不知道为什么)

示例

def canny(image):
    """canny边缘提取"""
    blurred = cv.GaussianBlur(image, (3, 3), 0)
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)

    grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
    grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1)

    # image:要检测的图像,threshold1:阈值1(最小值),threshold2:阈值2(最大值),使用此参数进行明显的边缘检测,
    # canny_output2 = cv.Canny(grad_x, grad_y, 30, 150)
    canny_output1 = cv.Canny(gray, 50, 150)  # 也可以直接传入gray
    cv.imshow("image", image)
    cv.imshow("Canny", canny_output1)
    # cv.imshow("Canny2", canny_output2)

结果:
在这里插入图片描述

参考链接:

#图像梯度 (注意都需要cv.convertScaleAbs将得到的有些负值取绝对值得到正数,并将数据转化到0-255之间,且sobel与Scarr算法中的数据位数都是32位浮点型的) import cv2 as cv import numpy as np def sobel_demo(image): #注意是32位float数据 grad_x = cv.Scharr(image, cv.CV_32F, 1, 0) grad_y = cv.Scharr(image, cv.CV_32F, 0, 1) #当用sobel算子不能很好的得到边缘的时候,就可以用Scharr算子,这是加强版的sobel算子,就可以得到 #原图像不是很明显的边缘了 # grad_x =cv.Sobel(image,cv.CV_32F,1,0) # grad_y =cv.Sobel(image,cv.CV_32F,0,1) gradx =cv.convertScaleAbs(grad_x) grady = cv.convertScaleAbs(grad_y) #cv.imshow("gradx",gradx) #cv.imshow("grady",grady) dst = cv.addWeighted(gradx,0.5,grady,0.5,0) cv.imshow("sobel_demo",dst) def lapalace_demo(image): #dst =cv.Laplacian(image,cv.CV_32F) #dst =cv.convertScaleAbs(dst) 会把dst变成单通道的8位的0-255的图像 #也可以用filter2D来做拉普拉斯算子 kernel = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]]) dst = cv.filter2D(image,cv.CV_32F,kernel) dst = cv.convertScaleAbs(dst) cv.imshow("lapalace",dst) src = cv.imread("E:/opencv/picture/step.jpg") cv.imshow("inital_window",src) #sobel_demo(src) lapalace_demo(src) cv.waitKey(0) cv.destroyAllWindows() 分析: 图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导。 一、 Sobel算子是普通一阶差分,是基于寻找梯度强度。拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。 def sobel_demo(image): #注意是32位float数据 grad_x = cv.Scharr(image, cv.CV_32F, 1, 0) grad_y = cv.Scharr(image, cv.CV_32F, 0, 1) #当用sobel算子不能很好的得到边缘的时候,就可以用Scharr算子,这是加强版的sobel算子,就可以得到 #原图像不是很明显的边缘了 # grad_x =cv.Sobel(image,cv.CV_32F,1,0) # grad_y =cv.Sobel(image,cv.CV_32F,0,1) gradx = cv.convertScaleAbs(grad_x) grady = cv.convertScaleAbs(grad_y) #cv.imshow("gradx",gradx) #cv.imshow("grady",grady) dst = cv.addWeighted(gradx,0.5,grady,0.5,0) cv.imshow("sobel_demo",dst) 1.Sobel算子用来计算图像灰度函数的近似梯度。Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。 2.Sobel具有平滑和微分的功效。即:Sobel算子先将图像横向或纵向平滑,然后再纵向或横向差分,得到的结果是平滑后的差分结果。 OpenCV的Sobel函数原型为:Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst 注:一般就设置src,ddepth = cv.CV_32F,dx,dy(对x方求梯度就是1,0对y方向求梯度就是0,1) src参数表示输入需要处理的图像。 ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。   具体组合如下:   src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)   src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F   src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F   src.depth() = CV_64F, 取ddepth = -1/CV_64F   注:ddepth =-1时,代表输出图像与输入图像相同的深度。 dx参数表示x方向上的差分阶数,1或0 。 dy参数表示y 方向上的差分阶数,1或0 。 dst参数表示输出与src相同大小和相同通道数的图像。 ksize参数表示Sobel算子的大小,必须为1、3、5、7。 scale参数表示缩放导数的比例常数,默认情况下没有伸缩系数。 delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。 borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。 2.OpenCVconvertScaleAbs函数使用线性变换转换输入数组元素成8位无符号整型。函数原型:convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst src参数表示原数组。 dst参数表示输出数组 (深度为 8u)。 alpha参数表示比例因子。 beta参数表示原数组元素按比例缩放后添加的值。 3.OpenCV的addWeighted函数是计算两个数组的加权和。函数原型:addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst 用于将x,y方向的梯度合成。 二、Scharr算子 当用sobel算子发现得到的边缘信息不明显的时候,就可以用Scharr算子了。该算子是sobel算子的加强版,用法也和sobel算子一样,效果更加突出。 Scharr算子也是计算x或y方向上的图像差分。OpenCV的Scharr函数原型为:Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst 参数和Sobel算子的几乎差不多,意思也一样,只是没有ksize大小。 三、拉普拉斯算子 1.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽•f)。 2.OpenCV的Laplacian函数原型为:Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst src参数表示输入需要处理的图像。 ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。   具体组合如下:   src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F) 注:当然我们也可以cv.filter2D命令来make一个拉普拉斯算子: kernel = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]]) dst = cv.filter2D(image,cv.CV_32F,kernel) dst = cv.convertScaleAbs(dst) cv.imshow("lapalace",dst) Canny算法 canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是: 好的检测- 算法能够尽可能多地标识出图像中的实际边缘。 好的定位- 标识出的边缘要尽可能与实际图像中的实际边缘尽可能接近。 最小响应- 图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘。 3.算法步骤:   ①高斯模糊 - GaussianBlur   ②灰度转换 - cvtColor   ③计算梯度 – Sobel/Scharr   ④非最大信号抑制   ⑤高低阈值输出二值图像 #canny算法常用步骤: #高斯模糊:因为canny对噪声很敏感,注意核size别太大 #源图像灰度化 #canny算法: 像素值小于低阈值的舍弃,高于高阈值的保留作为边缘信息,大于低阈值且该像素仅仅在连接到一个高于高阈值的像素时被保留。一般高阈值:低阈值在2:1到3:1之间 def canny_demo(image): image = cv.GaussianBlur(image,(3,3),0) gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) dst = cv.Canny(image,50,150) cv.imshow("Canny_demo",dst)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咬着棒棒糖闯天下

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值