OpenCV中视频操作及人脸识别案例

本文介绍了OpenCV中关键的视频操作技巧,包括视频读写、视频追踪的meanshift和camshift算法,以及实战案例——人脸检测与追踪。通过实例演示了如何读取视频、保存视频,以及如何使用这两种算法进行目标追踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenCV中视频操作及人脸识别案例

主要内容:

  • 视频文件的读取和存储
  • 视频追踪中的meanshift和camshift算法
  • 人脸识别案例

视频操作

视频读写

学习目标

  • 掌握读取视频文件,显示视频,保存视频文件的方法
从文件中读取视频并播放

在OpenCV中我们要获取一个视频,需要创建一个VideoCapture对象,指定你要读取的视频文件:

  1. 创建读取视频的对象
cap = cv.VideoCapture(filepath)

参数:

  • filepath: 视频文件路径
  1. 视频的属性信息

    2.1. 获取视频的某些属性

retval = cap.get(propId)

参数:

  • propId: 从0到18的数字,每个数字表示视频的属性

    常用属性有:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-puQj84GY-1646797714430)(F:\Python学习\129黑马人工智能2.0课程\学习随笔\阶段4计算机视觉与图像处理\图像处理与OpenCV随笔\第十一章视频操作及人脸识别案例\笔记图片\image-20191016164053661.png)]

​ 2.2 修改视频的属性信息

cap.set(propId,value)

参数:

  • proid: 属性的索引,与上面的表格相对应
  • value: 修改后的属性值

判断图像是否读取成功

isornot = cap.isOpened()
  • 若读取成功则返回true,否则返回False
  1. 获取视频的一帧图像
ret, frame = cap.read()

参数:

  • ret: 若获取成功返回True,获取失败,返回False
  • Frame: 获取到的某一帧的图像
  1. 调用cv.imshow()显示图像,在显示图像时使用cv.waitkey()设置适当的持续时间,如果太低视频会播放的非常快,如果太高就会播放的非常慢,通常情况下我们设置25ms就可以了。

  2. 最后,调用cap.realease()将视频释放掉

示例:

我的文件路径:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wL27nyNv-1646797714430)(笔记图片/image-20220309113124602.png)]

import numpy as np
import cv2 as cv

# 1 读取视频
# 路径一定要确保正确,不然显示不出来窗口!
cap = cv.VideoCapture("../image/DOG.wmv")

# 2 判断是否读取成功
while (cap.isOpened()):
    # 3 获取每一帧图像
    ret, frame = cap.read()
    # 4 是否获取成功
    if ret == True:
        cv.imshow("frame", frame)
    if cv.waitKey(25) & 0xFF == ord("q"):
        break
cap.release()
cv.destroyAllWindows()

保存视频

在OpenCV中我们保存视频使用的是VedioWriter对象,在其中指定输出文件的名称,如下所示:

  1. 创建视频写入的对象
out = cv2.VideoWriter(filename,fourcc, fps, frameSize)

参数:

  • filename:视频保存的位置
  • fourcc:指定视频编解码器的4字节代码
  • fps:帧率
  • frameSize:帧大小
  • 设置视频的编解码器,如下所示,
retval = cv2.VideoWriter_fourcc( c1, c2, c3, c4 )
  • 参数:

    • c1,c2,c3,c4: 是视频编解码器的4字节代码,在fourcc.org中找到可用代码列表,与平台紧密相关,常用的有:

      在Windows中:DIVX(.avi)

      在OS中:MJPG(.mp4),DIVX(.avi),X264(.mkv)。

  • 利用cap.read()获取视频中的每一帧图像,并使用out.write()将某一帧图像写入视频中。

  • 使用cap.release()和out.release()释放资源。

示例:

import cv2 as cv
import numpy as np

# 1. 读取视频
cap = cv.VideoCapture("../image/DOG.wmv")

# 2. 获取图像的属性(宽和高,),并将其转换为整数
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))

# 3. 创建保存视频的对象,设置编码格式,帧率,图像的宽高等
out = cv.VideoWriter('out1.avi',cv.VideoWriter_fourcc('M','J','P','G'), 10, (frame_width,frame_height))
while(True):
    # 4.获取视频中的每一帧图像
    ret, frame = cap.read()
    if ret == True: 
        # 5.将每一帧图像写入到输出文件中
        out.write(frame)
    else:
        break 

# 6.释放资源
cap.release()
out.release()
cv.destroyAllWindows()
小结
  1. 读取视频:
    • 读取视频:cap = cv.VideoCapture()
    • 判断读取成功:cap.isOpened()
    • 读取每一帧图像:ret,frame = cap.read()
    • 获取属性:cap.get(proid)
    • 设置属性:cap.set(proid,value)
    • 资源释放:cap.release()
  2. 保存视频
    • 保存视频: out = cv.VideoWrite()
    • 视频写入:out.write()
    • 资源释放:out.release()

视频追踪

学习目标

  • 理解meanshift的原理
  • 知道camshift算法
  • 能够使用meanshift和Camshift进行目标追踪
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值