自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 收藏
  • 关注

原创 ANN与SNN的那些事

ANN与SNN神经网络对比:ANN处理连续数值信息,持续计算能耗较高,时间信息利用较弱;SNN通过离散脉冲传递信息,事件驱动计算更节能,擅长处理时序信息且更接近生物神经元机制。两种网络在信息传递、计算方式、能耗及时序处理等方面存在显著差异,SNN在生物仿真和能效方面更具优势。

2025-06-02 18:42:00 405

原创 神经网络中的梯度消失与梯度爆炸

本文探讨了深度神经网络中梯度消失和梯度爆炸的问题及其解决方案。通过快递员传递包裹的类比,解释了梯度在反向传播过程中的衰减或放大机制。梯度消失是由于权重过小或激活函数导数不足导致信号衰减;梯度爆炸则源于权重过大使信号过度放大。深层网络更容易出现这些问题是因为链式反应的累积效应和激活函数的局限性。解决方案包括使用ReLU激活函数和ResNet的残差连接技术,后者通过"旁路"机制缩短梯度传播路径,有效缓解了深层网络的训练难题。这些方法为深度学习的稳定训练提供了重要保障。

2025-06-02 16:36:26 700

原创 残差神经网络ResNet

残差神经网络ResNet通过引入残差连接解决深层网络训练难题。传统深层网络易出现梯度消失或准确率退化问题。ResNet让输入可以跳过当前层直接传递,使网络能够有效训练上百层结构。其核心思想是让每层学习目标输出与输入的差值(残差),而非直接拟合复杂特征,从而降低训练难度。这种方法既缓解了梯度消失问题,又支持构建更深的网络结构,显著提升了模型性能。ResNet已成为图像识别等任务的基础架构,其"捷径"设计思想深刻影响了深度学习发展。

2025-06-02 16:25:50 299

原创 关于神经网络中的梯度和神经网络的反向传播以及梯度与损失的关系

用通俗的方式解释关于神经网络中的梯度和神经网络的反向传播以及梯度与损失的关系

2025-06-01 18:12:23 840

原创 关于神经网络中的激活函数

这篇博客生动地解释了神经网络中激活函数的作用。通过类比"安检门"、"调光开关"和"跷跷板",文章形象地说明了ReLU、Sigmoid和Tanh三种常见激活函数的工作机制:它们分别实现信号过滤、范围压缩和对立关系构建。文章强调,没有激活函数的神经网络只能进行线性运算,而激活函数引入非线性变换能力,使网络能够模拟人类复杂的决策过程(如综合考虑多种因素决定是否出门)。正是这种非线性特性,让神经网络从简单的计算工具进化为能够处理图像识别、语言翻译等复杂任务

2025-06-01 17:08:23 812

原创 为什么1*1的卷积核可以改变模型的通道数量

1×1卷积核通过调整卷积核数量可以灵活改变模型的通道数。其本质是对输入通道进行加权求和,每个核将多通道信息融合为一个新通道。当输出通道数N小于输入通道数C1时实现降维(如256→128),大于时则升维(如128→256)。这一过程类似"特征过滤器",通过参数学习保留关键信息。例如将RGB三通道图像用1×1卷积加权融合为单通道灰度图,展示了通道压缩的原理,这种操作既能减少计算量又能保持网络表达能力。

2025-05-29 10:47:25 249

原创 关于YOLO网络的骨干,颈部和头部

本文通过工厂流水线类比,阐述了深度学习网络中骨干网络和颈部网络的功能及其优化策略。骨干网络作为"初级加工厂",负责从图像中提取基础到高级的特征;颈部网络则充当"组装车间",对不同特征进行融合。文章特别强调精简这两部分最后一层通道的重要性:通过减少冗余信息,既能提升计算效率,又能确保核心特征的精准传递,最终优化模型性能。这种通道精简策略相当于工厂出货时筛选核心货物,使后续处理更高效准确。

2025-05-28 22:34:47 379

原创 数据集的标注

本文以URPC2020水下数据集为例,解析了XML标注文件的结构与内容。该文件采用PASCAL VOC格式,通过<annotation>根标签包含图像标识(<frame>)和多个目标标注(<object>)。每个<object>包含类别名称(<name>echinus)和边界框坐标(<bndbox>)。文中详细解释了坐标参数(xmin,ymin,xmax,ymax)的含义,并以具体标注示例说明如何计算目标框的宽高。此类标注文件主要用于训

2025-05-28 10:55:14 539

原创 YOLO模型与其中的上采样和下采样

YOLO模型与其中的上采样和下采样

2025-05-27 19:02:43 395

原创 Pytorch中两个最基本的构件

Tensor支持多种数学运算,如矩阵与标量、矩阵与矩阵的加减乘除,以及矩阵的升维、降维、重塑等操作。此外,Tensor还支持按行或列求最大值、索引及求和等复杂操作。

2025-05-17 00:43:24 281

原创 Pytorch基础

pytorch的前身是torch,其是一个十分老牌、对多为矩阵数据进行操作的张量(tensor)库。pytorch具有两种高层面的功能使用强大的GPU加速的Tensor计算构建基于autograd系统的深度神经网络Autograd系统是一种自动微分(Automatic Differentiation)工具,用于高效计算函数的导数(梯度),广泛应用于深度学习框架(如PyTorch、TensorFlow)中训练神经网络。其核心功能是自动计算计算图中各操作的梯度,无需手动推导数学公式。

2025-05-15 22:50:53 249

原创 python中的画图工具Matplotlib

Matplotlib是python中的画图工具,可以画2d图像,也可以画3d图像。

2025-05-15 22:38:05 198

原创 关于python中Numpy的多维数组切片

关于python中Numpy的多维数组切片

2025-05-15 19:29:38 221

原创 深度学习中所涉及到的python科学计算

深度学习中所涉及到的python科学计算

2025-05-15 01:40:00 151

原创 深度学习所涉及到python中常用的语法知识点

深度学习所涉及到python中常用的语法知识点

2025-05-15 01:24:25 137

原创 机器学习和深度学习

机器学习是什么,深度学习是什么,有什么区别,发展,模型,框架等等

2025-05-14 22:43:48 261

原创 GitHub创建分支,切换分支,合并分支,删除分支,从本地库推送到远程库

GitHub创建分支,切换分支,合并分支,删除分支,从本地库推送到远程库

2025-05-14 21:59:55 247

原创 $ git add 报错:Unable to read current working directory

$ git add 报错:Unable to read current working directory

2025-05-13 17:25:35 262 2

原创 One-stage与Two-stage

目标检测方法根据其检测流程的复杂度,主要分为 One-Stage(单阶段) 和 Two-Stage(两阶段) 两大类。它们在速度、精度和应用场景上有显著差异。

2025-05-03 21:13:02 971

原创 Dense Detector与Dense-to-Sparse Detectors

在图像或特征图的每个预设空间位置密集生成候选框(object candidates),直接预测其类别和位置偏移。:引入RPN(Region Proposal Network)替代Selective Search,实现端到端。(虽为稀疏检测,但灵感部分来自dense思想):将图像视为序列化特征,通过全局注意力机制生成候选。:抛弃anchor,直接对特征图每个点预测距离边界的偏移(anchor-free)。:首阶段生成稀疏候选(Region Proposals),次阶段精细化分类/回归。

2025-05-03 20:45:07 329

原创 准确率、精确率与召回率

准确率、精确率与召回率

2025-05-02 15:12:17 632

原创 详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割

这篇文章讲得好。

2025-05-01 23:59:27 139

原创 Tiny Object Detection with Single Point Supervision

Tiny Object Detection with Single Point Supervision 论文精度

2025-04-30 15:11:00 646 1

原创 知识蒸馏的方法

什么是知识蒸馏?为什么要用知识蒸馏?有什么作用?知识蒸馏即teacher-student模型,顾名思义,其中包含了teacher和students两个部分。那为什么要有teacher和students这两个部分呢?图片来自这张图中有两个部分,一个是teacher部分,一个是student部分。

2025-04-18 16:58:48 674

原创 知识蒸馏中的Logits和softmax

知识蒸馏中的Logits和softmax

2025-04-16 20:53:28 740

原创 知识蒸馏中的监督信号

传统的监督学习标签,通常是。

2025-04-16 18:28:23 123

原创 LeetCode 2264 字符串中最大的三位相同数字

LeetCode 2264 字符串中最大的三位相同数字

2025-01-09 09:18:34 733

原创 PAT 1012 数字分类

PAT1012数字分类20/20

2025-01-06 10:53:26 1311

原创 PAT 1020 月饼

PAT 1020 月饼 25/25

2025-01-06 10:49:47 1545

原创 PAT1009 说反话

PAT1009 说反话 20/20

2025-01-06 09:59:57 325

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除