SparkCore的简单使用

SparkCore

0. RDD简介

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合

  • 弹性
    • 存储的弹性:内存与磁盘的自动切换;
    • 容错的弹性:数据丢失可以自动恢复;
    • 计算的弹性:计算出错重试机制;
    • 分片的弹性:可根据需要重新分片。
  • 分布式:数据存储在大数据集群不同节点上
  • 数据集:RDD 封装了计算逻辑,并不保存数据
  • 数据抽象:RDD 是一个抽象类,需要子类具体实现
  • 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的RDD,在新的RDD 里面封装计算逻辑可分区、并行计算



1. RDD创建

从集合(内存)中创建 RDD

def main(args: Array[String]): Unit = {
    // setAppName: 程序名称
    // setMaster: 分区数
    val sparkConf: SparkConf = new SparkConf().setAppName("fzk").setMaster("local[2]")
    val sparkContext = new SparkContext(sparkConf)

    val data: List[Int] = List(1, 2, 3, 4)
    // 从本地文件读取数据
    val sourceData: RDD[Int] = sparkContext.makeRDD(data)

    sourceData.collect().foreach(println)

    sparkContext.stop()
}



从外部存储(文件)创建RDD

def main(args: Array[String]): Unit = {
    val sparkConf: SparkConf = new SparkConf().setAppName("fzk").setMaster("local[2]")
    val sparkContext = new SparkContext(sparkConf)

    // 从本地文件读取数据
    val sourceData01: RDD[String] = sparkContext.textFile("path/data")
    // 从分布式系统读取数据(例如 HDFS)
    val sourceData02: RDD[String] = sparkContext.textFile("hdfs://hadoop01:8020/data")

    sparkContext.stop()
}





2. RDD 算子

转换算子(Transformations)

转换算子官网文档

Spark 的一些常见转换

TransformationMeaning
map(func)通过函数func传递源的每个元素,返回一个新的分布式数据集。
filter(func)返回通过选择func返回 true的源元素形成的新数据集。
flatMap(func)类似于 map,但每个输入项可以映射到 0 个或更多输出项(因此func应该返回一个 Seq 而不是单个项)。
mapPartitions(func)与map类似,但在RDD的每个分区(块)上单独运行,所以func在T类型的RDD上运行时必须是Iterator => Iterator类型。
mapPartitionsWithIndex(func)与 mapPartitions 类似,但也为func提供了一个表示分区索引的整数值,因此在 T 类型的 RDD 上运行时, func必须是 (Int, Iterator) => Iterator 类型。
sample(withReplacement, fraction, seed)使用给定的随机数生成器种子对数据的一小部分进行采样,无论是否替换。
union(otherDataset)返回一个新数据集,其中包含源数据集中元素和参数的并集。
intersection(otherDataset)返回一个新的 RDD,其中包含源数据集中元素和参数的交集。
distinct([numPartitions]))返回一个包含源数据集不同元素的新数据集。
groupByKey([numPartitions])在 (K, V) 对的数据集上调用时,返回 (K, Iterable) 对的数据集。 **注意:**如果您正在分组以便对每个键执行聚合(例如求和或平均),则使用reduceByKeyoraggregateByKey将产生更好的性能。 **注意:**默认情况下,输出中的并行度取决于父 RDD 的分区数。您可以传递一个可选numPartitions参数来设置不同数量的任务。
reduceByKey(func, [numPartitions])在 (K, V) 对的数据集上调用时,返回 (K, V) 对的数据集,其中每个键的值使用给定的 reduce 函数func聚合,该函数必须是 (V,V) => V. 与中一样groupByKey,reduce 任务的数量可以通过可选的第二个参数进行配置。
aggregateByKey(zeroValue)(seqOp, combOp, [numPartitions])当在 (K, V) 对的数据集上调用时,返回 (K, U) 对的数据集,其中每个键的值使用给定的组合函数和中性“零”值聚合。允许与输入值类型不同的聚合值类型,同时避免不必要的分配。与 中一样groupByKey,reduce 任务的数量可以通过可选的第二个参数进行配置。
sortByKey([ascending], [numPartitions])当在 K 实现 Ordered 的 (K, V) 对数据集上调用时,返回按布尔ascending参数中指定的键按升序或降序排序的 (K, V) 对数据集。
join(otherDataset, [numPartitions])当在 (K, V) 和 (K, W) 类型的数据集上调用时,返回 (K, (V, W)) 对的数据集,其中每个键的所有元素对。leftOuterJoin通过、rightOuterJoin和支持外连接fullOuterJoin
cogroup(otherDataset, [numPartitions])当在 (K, V) 和 (K, W) 类型的数据集上调用时,返回 (K, (Iterable, Iterable)) 元组的数据集。此操作也称为groupWith.
cartesian(otherDataset)在 T 和 U 类型的数据集上调用时,返回 (T, U) 对(所有元素对)的数据集。
pipe(command, [envVars])通过 shell 命令(例如 Perl 或 bash 脚本)对 RDD 的每个分区进行管道传输。RDD 元素被写入进程的标准输入,输出到标准输出的行作为字符串的 RDD 返回。
coalesce(numPartitions)将 RDD 中的分区数减少到 numPartitions。对于过滤大型数据集后更有效地运行操作很有用。
repartition(numPartitions)随机重新排列 RDD 中的数据以创建更多或更少的分区并在它们之间进行平衡。这总是对网络上的所有数据进行洗牌。
repartitionAndSortWithinPartitions(partitioner)根据给定的分区器对 RDD 进行重新分区,并在每个生成的分区中,按记录的键对记录进行排序。这比repartition在每个分区中调用然后排序更有效,因为它可以将排序下推到 shuffle 机器中。



行动算子(Actions)

行动算子官网文档

ActionMeaning
reduce(func)使用函数func聚合数据集的元素(它接受两个参数并返回一个)。该函数应该是可交换的和关联的,以便可以并行正确计算。
collect()在驱动程序中将数据集的所有元素作为数组返回。这通常在过滤器或其他返回足够小的数据子集的操作之后很有用。
count()返回数据集中元素的数量。
first()返回数据集的第一个元素(类似于 take(1))。
take(n)返回包含数据集前n 个元素的数组。
takeSample(withReplacement, num, [seed])返回一个数组,其中包含数据集的num个元素的随机样本,有或没有替换,可选地预先指定一个随机数生成器种子。
takeOrdered(n, [ordering])使用自然顺序或自定义比较器返回 RDD 的前n 个元素。
saveAsTextFile(path)将数据集的元素作为文本文件(或文本文件集)写入本地文件系统、HDFS 或任何其他 Hadoop 支持的文件系统的给定目录中。Spark 将对每个元素调用 toString 以将其转换为文件中的一行文本。
saveAsSequenceFile(path) (Java and Scala)将数据集的元素作为 Hadoop SequenceFile 写入本地文件系统、HDFS 或任何其他 Hadoop 支持的文件系统中的给定路径中。这在实现 Hadoop 的 Writable 接口的键值对的 RDD 上可用。在 Scala 中,它也可用于可隐式转换为 Writable 的类型(Spark 包括基本类型的转换,如 Int、Double、String 等)。
saveAsObjectFile(path) (Java and Scala)使用 Java 序列化以简单格式编写数据集的元素,然后可以使用 SparkContext.objectFile().
countByKey()仅适用于 (K, V) 类型的 RDD。返回 (K, Int) 对的哈希图以及每个键的计数。
foreach(func)对数据集的每个元素运行函数func。这通常是针对副作用进行的,例如更新累加器或与外部存储系统交互。 注意:修改除了累加器以外的变量foreach()可能会导致未定义的行为。有关更多详细信息,请参阅了解闭包





3. Save输出

// 保存成 Text 文件
rdd.saveAsTextFile("output")

// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")

// 保存成 Sequencefile 文件(这种方式只能是 key-value 格式)
rdd.map((_,1)).saveAsSequenceFile("output2")





4. 序列化

  • Serializable :java常用的序列化方式

  • Kryo :是 Serializable 的 10 倍

    • 当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化
    • ⚠️:使用Kryo 序列化,也要继承Serializable 接口
    val sparkConf: SparkConf = new SparkConf()
          .setAppName("fzk")
          .setMaster("local[2]")
          // 替换默认的序列化机制
          .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
          // 注册需要使用 kryo 序列化的自定义类(Searcher :自定义实体类)
          .registerKryoClasses(Array(classOf[Searcher]))
    
    val sparkContext = new SparkContext(sparkConf)
    





5. 持久化

缓存

  • RDD 通过Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该RDD 将会被缓存在计算节点的内存中,并供后面重用
  • 缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD 的一系列转换,丢失的数据会被重算,由于RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可, 并不需要重算全部Partition
  • 缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD 的一系列转换,丢失的数据会被重算,由于RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可, 并不需要重算全部Partition

cache

  • 通过Cache 方法将前面的RDD计算结果缓存在 JVM 的堆内存中。

  • ⚠️:但是并不是方法被调用时立即缓存,而是触发后面的 action 算子时,该RDD 将会被缓存在计算节点的内存中,并供后面重用

  • ⚠️:cache内部调用的是persist(StorageLevel.MEMORY_ONLY)方法,将数据缓存到内存中

    rdd.cache()
    

persist

  • 通过 persist 方法将前面的RDD计算结果缓存

  • 有以下几种缓存模式

    模式缓存副本序列化(内存占用少,cpu占用高)
    DISK_ONLY磁盘1
    DISK_ONLY_2磁盘2
    MEMORY_ONLY内存1
    MEMORY_ONLY_2内存2
    MEMORY_ONLY_SER内存1
    MEMORY_ONLY_SER_2内存2
    MEMORY_AND_DISK内存&磁盘1
    MEMORY_AND_DISK_2内存&磁盘2
    MEMORY_AND_DISK_SER内存&磁盘1
    MEMORY_AND_DISK_SER_2内存&磁盘2
    rdd.persist(StorageLevel.MEMORY_AND_DISK)
    



checkpoint(检查点)

  • 所谓的检查点其实就是通过将RDD 中间结果写入磁盘,由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销

  • 对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发

    def main(args: Array[String]): Unit = {
        val sparkConf: SparkConf = new SparkConf().setAppName("fzk").setMaster("local[2]")
        val sparkContext = new SparkContext(sparkConf)
    
        // 1. 配置检查点的存储路径
        sparkContext.setCheckpointDir("hdfs://hadoop:8020/spark/checkpoint")
    
        val data: List[Int] = List(1, 2, 3, 4, 5, 6)
        val sourceData: RDD[Int] = sparkContext.makeRDD(data)
        val rdd: RDD[(Int, Int)] = sourceData.map(data => (data, 1))
    
        // 2. 将需要使用到检查点的 RDD 调用 checkpoint 方法
        rdd.checkpoint()
    
        sparkContext.stop()
      }
    





6. 分区器

  • Spark 目前支持Hash 分区和 Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了RDD 中分区的个数、RDD 中每条数据经过Shuffle 后进入哪个分区,进而决定了Reduce 的个数
  • 只有Key-Value 类型的RDD 才有分区器,非 Key-Value 类型的RDD 分区的值是 None
  • 每个RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的

Hash 分区(系统自带)

对于给定的 key,计算其hashCode,并除以分区个数取余

class HashPartitioner(partitions: Int) extends Partitioner {
  require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")

  def numPartitions: Int = partitions

  def getPartition(key: Any): Int = key match {
    case null => 0
    case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
  }

  override def equals(other: Any): Boolean = other match {
    case h: HashPartitioner =>
      h.numPartitions == numPartitions
    case _ =>
      false
  }

  override def hashCode: Int = numPartitions
}



Range 分区(系统自带)

将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序

class RangePartitioner[K : Ordering : ClassTag, V](
    partitions: Int,
    rdd: RDD[_ <: Product2[K, V]],
    private var ascending: Boolean = true,
    val samplePointsPerPartitionHint: Int = 20)
  extends Partitioner {

  // A constructor declared in order to maintain backward compatibility for Java, when we add the
  // 4th constructor parameter samplePointsPerPartitionHint. See SPARK-22160.
  // This is added to make sure from a bytecode point of view, there is still a 3-arg ctor.
  def this(partitions: Int, rdd: RDD[_ <: Product2[K, V]], ascending: Boolean) = {
    this(partitions, rdd, ascending, samplePointsPerPartitionHint = 20)
  }

  // We allow partitions = 0, which happens when sorting an empty RDD under the default settings.
  require(partitions >= 0, s"Number of partitions cannot be negative but found $partitions.")
  require(samplePointsPerPartitionHint > 0,
    s"Sample points per partition must be greater than 0 but found $samplePointsPerPartitionHint")

  private var ordering = implicitly[Ordering[K]]

  // An array of upper bounds for the first (partitions - 1) partitions
  private var rangeBounds: Array[K] = {
    if (partitions <= 1) {
      Array.empty
    } else {
      // This is the sample size we need to have roughly balanced output partitions, capped at 1M.
      // Cast to double to avoid overflowing ints or longs
      val sampleSize = math.min(samplePointsPerPartitionHint.toDouble * partitions, 1e6)
      // Assume the input partitions are roughly balanced and over-sample a little bit.
      val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.length).toInt
      val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
      if (numItems == 0L) {
        Array.empty
      } else {
        // If a partition contains much more than the average number of items, we re-sample from it
        // to ensure that enough items are collected from that partition.
        val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
        val candidates = ArrayBuffer.empty[(K, Float)]
        val imbalancedPartitions = mutable.Set.empty[Int]
        sketched.foreach { case (idx, n, sample) =>
          if (fraction * n > sampleSizePerPartition) {
            imbalancedPartitions += idx
          } else {
            // The weight is 1 over the sampling probability.
            val weight = (n.toDouble / sample.length).toFloat
            for (key <- sample) {
              candidates += ((key, weight))
            }
          }
        }
        if (imbalancedPartitions.nonEmpty) {
          // Re-sample imbalanced partitions with the desired sampling probability.
          val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
          val seed = byteswap32(-rdd.id - 1)
          val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
          val weight = (1.0 / fraction).toFloat
          candidates ++= reSampled.map(x => (x, weight))
        }
        RangePartitioner.determineBounds(candidates, math.min(partitions, candidates.size))
      }
    }
  }

  def numPartitions: Int = rangeBounds.length + 1

  private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]

  def getPartition(key: Any): Int = {
    val k = key.asInstanceOf[K]
    var partition = 0
    if (rangeBounds.length <= 128) {
      // If we have less than 128 partitions naive search
      while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
        partition += 1
      }
    } else {
      // Determine which binary search method to use only once.
      partition = binarySearch(rangeBounds, k)
      // binarySearch either returns the match location or -[insertion point]-1
      if (partition < 0) {
        partition = -partition-1
      }
      if (partition > rangeBounds.length) {
        partition = rangeBounds.length
      }
    }
    if (ascending) {
      partition
    } else {
      rangeBounds.length - partition
    }
  }

  override def equals(other: Any): Boolean = other match {
    case r: RangePartitioner[_, _] =>
      r.rangeBounds.sameElements(rangeBounds) && r.ascending == ascending
    case _ =>
      false
  }

  override def hashCode(): Int = {
    val prime = 31
    var result = 1
    var i = 0
    while (i < rangeBounds.length) {
      result = prime * result + rangeBounds(i).hashCode
      i += 1
    }
    result = prime * result + ascending.hashCode
    result
  }

  @throws(classOf[IOException])
  private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
    val sfactory = SparkEnv.get.serializer
    sfactory match {
      case js: JavaSerializer => out.defaultWriteObject()
      case _ =>
        out.writeBoolean(ascending)
        out.writeObject(ordering)
        out.writeObject(binarySearch)

        val ser = sfactory.newInstance()
        Utils.serializeViaNestedStream(out, ser) { stream =>
          stream.writeObject(scala.reflect.classTag[Array[K]])
          stream.writeObject(rangeBounds)
        }
    }
  }

  @throws(classOf[IOException])
  private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
    val sfactory = SparkEnv.get.serializer
    sfactory match {
      case js: JavaSerializer => in.defaultReadObject()
      case _ =>
        ascending = in.readBoolean()
        ordering = in.readObject().asInstanceOf[Ordering[K]]
        binarySearch = in.readObject().asInstanceOf[(Array[K], K) => Int]

        val ser = sfactory.newInstance()
        Utils.deserializeViaNestedStream(in, ser) { ds =>
          implicit val classTag = ds.readObject[ClassTag[Array[K]]]()
          rangeBounds = ds.readObject[Array[K]]()
        }
    }
  }
}



自定义分区器

步骤:

  1. 继承 Partitioner
  2. 实现 numPartitionsgetPartition
  3. 在 k-v 类型的 RDD 中使用
// 1. 继承 Partitioner
class Mypartition extends Partitioner {
    // 2.1 分区个数
    override def numPartitions: Int = 3

    /**
     * 2.2 按照数据来进行分区
     * @param key  数据
     * @return  返回数据在第几分区(分区从 0 开始)
     */
    override def getPartition(key: Any): Int = {
        // TODO 编写分区逻辑(这里列举对 分区数量 取模)
        key.toString.toInt % numPartitions
    }
}



def main(args: Array[String]): Unit = {
    val sparkConf: SparkConf = new SparkConf().setAppName("fzk").setMaster("local[2]")
    val sparkContext = new SparkContext(sparkConf)

    val data: List[Int] = List(1, 2, 3, 4, 5, 6)
    val sourceData: RDD[Int] = sparkContext.makeRDD(data)
    val rdd: RDD[(Int, Int)] = sourceData.map(data => (data, 1))

    // 3. 在 k-v 类型的 RDD 中使用
    rdd.partitionBy(new Mypartition)

    sparkContext.stop()
}





7. 广播变量

  • 广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个 Spark 操作使用
  • 通俗来说:所有分区读这一个对象数据(没有广播变量的话,不同分区读不同分区的数据,有了广播变量读的就是同一个值)
  1. 声明广播变量

  2. 使用广播变量

    def main(args: Array[String]): Unit = {
        val sparkConf: SparkConf = new SparkConf().setAppName("fzk").setMaster("local[2]")
        val sparkContext = new SparkContext(sparkConf)
    
        // 1. 声明广播变量
        val mapBroadcast: Broadcast[mutable.Map[Int, String]] = sparkContext.broadcast(mutable.Map(1 -> "a", 2 -> "b", 3 -> "c"))
    
        val data: List[Int] = List(1, 2, 3)
        val sourceData: RDD[Int] = sparkContext.makeRDD(data)
        val rdd: RDD[(Int, String)] = sourceData.map(data => {
            // 2. 使用广播变量
            (data, mapBroadcast.value.getOrElse(data, "abc"))
        })
    
        sparkContext.stop()
    }
    





Maven

<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-yarn_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值