论文笔记--决策树(Decision Tree)

论文笔记–决策树(Decision Tree)

1.定义
首先,决策树是一个树结构。其非叶节点表示的是一个特征属性的测试,而每个分支代表了其父节点的特征属性在某个值域的输出。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。决策树仅有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出。

2.决策树的理解
假设你是一个大龄相亲女士,你的相亲过程就可用决策树描述:
在这里插入图片描述
3.决策树的生成算法
决策树生成算法主要有ID3算法与C4.5算法
关于ID3算法(附上链接):http://blog.csdn.net/acdreamers/article/details/44661149、
C4.5算法其实是ID3 的改进,ID3主要是根据信息增益度量特征的选择,而C4.5是根据信息增益率度量特征选择。参考链接为: http://blog.csdn.net/acdreamers/article/details/44661149

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值